Bacterial Spores Survive Simulated Meteorite Impact

A hypothetical interplanetary transfer of viable microorganisms requires that the microbes survive the following steps: (i) escape process, (ii) transient journey in space, and (iii) entry process. Step 1 involves hypervelocity impact under strong shock metamorphism of the ejected microbe-bearing ro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Icarus (New York, N.Y. 1962) N.Y. 1962), 2001, Vol.149 (1), p.285-290
Hauptverfasser: Horneck, G., Stöffler, D., Eschweiler, U., Hornemann, U.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 290
container_issue 1
container_start_page 285
container_title Icarus (New York, N.Y. 1962)
container_volume 149
creator Horneck, G.
Stöffler, D.
Eschweiler, U.
Hornemann, U.
description A hypothetical interplanetary transfer of viable microorganisms requires that the microbes survive the following steps: (i) escape process, (ii) transient journey in space, and (iii) entry process. Step 1 involves hypervelocity impact under strong shock metamorphism of the ejected microbe-bearing rock fragment. This paper reports experimental studies on the survival of microbes after a simulated meteorite impact. In shock recovery experiments with an explosive setup, spores of Bacillus subtilis HA 101, immobilized between two quartz plates, were subjected to a peak shock pressure of 32 GPa. Although the spore layer showed an intense darkening after the shock treatment, up to 500 spores per sample survived, resulting in a survival rate up to 10 −4. This experimental pressure is in the pressure range which some martian meteorites have experienced according to well-calibrated shock effects of their mineral constituents. The data support the hypothesis that bacterial spores may survive an impact-induced escape process in a scenario of interplanetary transfer of life.
doi_str_mv 10.1006/icar.2000.6543
format Article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1006_icar_2000_6543</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0019103500965436</els_id><sourcerecordid>S0019103500965436</sourcerecordid><originalsourceid>FETCH-LOGICAL-a309t-d05e29561ae816d9d3b661195ceab37fe91b5cc80fa3841015b0f2d5a299270f3</originalsourceid><addsrcrecordid>eNp1j01PhDAURRujiTi6dc0fAN-jtEOXOvFjkjEu0HVT2kdSA0JahsR_L2Tczupu7rm5h7F7hBwB5IO3JuQFAORSlPyCJQgKskKW_JIlAKgyBC6u2U2M30tLVIonjD8ZO1HwpkvrcQgU0_oYZj9TWvv-2JmJXPpOEw3BT5Tu-3Gp37Kr1nSR7v5zw75enj93b9nh43W_ezxkhoOaMgeCCiUkGqpQOuV4IyWiEpZMw7ctKWyEtRW0hlclAooG2sIJUyhVbKHlG5afdm0YYgzU6jH43oRfjaBXZb0q61VZr8oLUJ0AWl7NnoKO1tOPJecD2Um7wZ9D_wAAulyH</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Bacterial Spores Survive Simulated Meteorite Impact</title><source>Elsevier ScienceDirect Journals</source><creator>Horneck, G. ; Stöffler, D. ; Eschweiler, U. ; Hornemann, U.</creator><creatorcontrib>Horneck, G. ; Stöffler, D. ; Eschweiler, U. ; Hornemann, U.</creatorcontrib><description>A hypothetical interplanetary transfer of viable microorganisms requires that the microbes survive the following steps: (i) escape process, (ii) transient journey in space, and (iii) entry process. Step 1 involves hypervelocity impact under strong shock metamorphism of the ejected microbe-bearing rock fragment. This paper reports experimental studies on the survival of microbes after a simulated meteorite impact. In shock recovery experiments with an explosive setup, spores of Bacillus subtilis HA 101, immobilized between two quartz plates, were subjected to a peak shock pressure of 32 GPa. Although the spore layer showed an intense darkening after the shock treatment, up to 500 spores per sample survived, resulting in a survival rate up to 10 −4. This experimental pressure is in the pressure range which some martian meteorites have experienced according to well-calibrated shock effects of their mineral constituents. The data support the hypothesis that bacterial spores may survive an impact-induced escape process in a scenario of interplanetary transfer of life.</description><identifier>ISSN: 0019-1035</identifier><identifier>EISSN: 1090-2643</identifier><identifier>DOI: 10.1006/icar.2000.6543</identifier><language>eng</language><publisher>Elsevier Inc</publisher><ispartof>Icarus (New York, N.Y. 1962), 2001, Vol.149 (1), p.285-290</ispartof><rights>2001 Academic Press</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a309t-d05e29561ae816d9d3b661195ceab37fe91b5cc80fa3841015b0f2d5a299270f3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0019103500965436$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,4010,27900,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Horneck, G.</creatorcontrib><creatorcontrib>Stöffler, D.</creatorcontrib><creatorcontrib>Eschweiler, U.</creatorcontrib><creatorcontrib>Hornemann, U.</creatorcontrib><title>Bacterial Spores Survive Simulated Meteorite Impact</title><title>Icarus (New York, N.Y. 1962)</title><description>A hypothetical interplanetary transfer of viable microorganisms requires that the microbes survive the following steps: (i) escape process, (ii) transient journey in space, and (iii) entry process. Step 1 involves hypervelocity impact under strong shock metamorphism of the ejected microbe-bearing rock fragment. This paper reports experimental studies on the survival of microbes after a simulated meteorite impact. In shock recovery experiments with an explosive setup, spores of Bacillus subtilis HA 101, immobilized between two quartz plates, were subjected to a peak shock pressure of 32 GPa. Although the spore layer showed an intense darkening after the shock treatment, up to 500 spores per sample survived, resulting in a survival rate up to 10 −4. This experimental pressure is in the pressure range which some martian meteorites have experienced according to well-calibrated shock effects of their mineral constituents. The data support the hypothesis that bacterial spores may survive an impact-induced escape process in a scenario of interplanetary transfer of life.</description><issn>0019-1035</issn><issn>1090-2643</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><recordid>eNp1j01PhDAURRujiTi6dc0fAN-jtEOXOvFjkjEu0HVT2kdSA0JahsR_L2Tczupu7rm5h7F7hBwB5IO3JuQFAORSlPyCJQgKskKW_JIlAKgyBC6u2U2M30tLVIonjD8ZO1HwpkvrcQgU0_oYZj9TWvv-2JmJXPpOEw3BT5Tu-3Gp37Kr1nSR7v5zw75enj93b9nh43W_ezxkhoOaMgeCCiUkGqpQOuV4IyWiEpZMw7ctKWyEtRW0hlclAooG2sIJUyhVbKHlG5afdm0YYgzU6jH43oRfjaBXZb0q61VZr8oLUJ0AWl7NnoKO1tOPJecD2Um7wZ9D_wAAulyH</recordid><startdate>2001</startdate><enddate>2001</enddate><creator>Horneck, G.</creator><creator>Stöffler, D.</creator><creator>Eschweiler, U.</creator><creator>Hornemann, U.</creator><general>Elsevier Inc</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2001</creationdate><title>Bacterial Spores Survive Simulated Meteorite Impact</title><author>Horneck, G. ; Stöffler, D. ; Eschweiler, U. ; Hornemann, U.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a309t-d05e29561ae816d9d3b661195ceab37fe91b5cc80fa3841015b0f2d5a299270f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Horneck, G.</creatorcontrib><creatorcontrib>Stöffler, D.</creatorcontrib><creatorcontrib>Eschweiler, U.</creatorcontrib><creatorcontrib>Hornemann, U.</creatorcontrib><collection>CrossRef</collection><jtitle>Icarus (New York, N.Y. 1962)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Horneck, G.</au><au>Stöffler, D.</au><au>Eschweiler, U.</au><au>Hornemann, U.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bacterial Spores Survive Simulated Meteorite Impact</atitle><jtitle>Icarus (New York, N.Y. 1962)</jtitle><date>2001</date><risdate>2001</risdate><volume>149</volume><issue>1</issue><spage>285</spage><epage>290</epage><pages>285-290</pages><issn>0019-1035</issn><eissn>1090-2643</eissn><abstract>A hypothetical interplanetary transfer of viable microorganisms requires that the microbes survive the following steps: (i) escape process, (ii) transient journey in space, and (iii) entry process. Step 1 involves hypervelocity impact under strong shock metamorphism of the ejected microbe-bearing rock fragment. This paper reports experimental studies on the survival of microbes after a simulated meteorite impact. In shock recovery experiments with an explosive setup, spores of Bacillus subtilis HA 101, immobilized between two quartz plates, were subjected to a peak shock pressure of 32 GPa. Although the spore layer showed an intense darkening after the shock treatment, up to 500 spores per sample survived, resulting in a survival rate up to 10 −4. This experimental pressure is in the pressure range which some martian meteorites have experienced according to well-calibrated shock effects of their mineral constituents. The data support the hypothesis that bacterial spores may survive an impact-induced escape process in a scenario of interplanetary transfer of life.</abstract><pub>Elsevier Inc</pub><doi>10.1006/icar.2000.6543</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0019-1035
ispartof Icarus (New York, N.Y. 1962), 2001, Vol.149 (1), p.285-290
issn 0019-1035
1090-2643
language eng
recordid cdi_crossref_primary_10_1006_icar_2000_6543
source Elsevier ScienceDirect Journals
title Bacterial Spores Survive Simulated Meteorite Impact
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T02%3A38%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bacterial%20Spores%20Survive%20Simulated%20Meteorite%20Impact&rft.jtitle=Icarus%20(New%20York,%20N.Y.%201962)&rft.au=Horneck,%20G.&rft.date=2001&rft.volume=149&rft.issue=1&rft.spage=285&rft.epage=290&rft.pages=285-290&rft.issn=0019-1035&rft.eissn=1090-2643&rft_id=info:doi/10.1006/icar.2000.6543&rft_dat=%3Celsevier_cross%3ES0019103500965436%3C/elsevier_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0019103500965436&rfr_iscdi=true