Arcs and Curves over a Finite Field

In [11], a new bound for the number of points on an algebraic curve over a finite field of odd order was obtained, and applied to improve previous bounds on the size of a complete arc not contained in a conic. Here, a similar approach is used to show that a complete arc in a plane of even order q ha...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Finite fields and their applications 1999-10, Vol.5 (4), p.393-408
Hauptverfasser: Hirschfeld, J.W.P., Korchmáros, G.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 408
container_issue 4
container_start_page 393
container_title Finite fields and their applications
container_volume 5
creator Hirschfeld, J.W.P.
Korchmáros, G.
description In [11], a new bound for the number of points on an algebraic curve over a finite field of odd order was obtained, and applied to improve previous bounds on the size of a complete arc not contained in a conic. Here, a similar approach is used to show that a complete arc in a plane of even order q has size q+2 or q−q+1 or less than q−2q+6. To obtain this result, first a new characterization of a Hermitian curve for any square q is given; more precisely, it is shown that a curve of sufficiently low degree has a certain upper bound for the number of its rational points with equality occurring in this bound only when the curve is Hermitian. Finally, another application is given concerning the degree of the curve on which a unital can lie.
doi_str_mv 10.1006/ffta.1999.0260
format Article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1006_ffta_1999_0260</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1071579799902605</els_id><sourcerecordid>S1071579799902605</sourcerecordid><originalsourceid>FETCH-LOGICAL-c326t-e8aeb1851d42bae676aede1eb78306fae758c5dea9a33e0f881f3261b45c2f213</originalsourceid><addsrcrecordid>eNp1j01LxDAURYMoOI5uXRdct-YlzddyKI4jDLjRdUiTF4iMrSS14L-3Zdy6undzLvcQcg-0AUrlY4yTa8AY01Am6QXZADW0Zq0Ul2tXUAtl1DW5KeWDUgDB9YY87LIvlRtC1X3nGUs1zpgrV-3TkCZcAk_hllxFdyp495db8r5_eusO9fH1-aXbHWvPmZxq1A570AJCy3qHUkmHAQF7pTmV0aES2ouAzjjOkUatIS4g9K3wLDLgW9Kcd30eS8kY7VdOny7_WKB2VbSrol0V7aq4APoM4PJqTpht8QkHjyFl9JMNY_oP_QUVg1a2</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Arcs and Curves over a Finite Field</title><source>Elsevier ScienceDirect Journals Complete</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Hirschfeld, J.W.P. ; Korchmáros, G.</creator><creatorcontrib>Hirschfeld, J.W.P. ; Korchmáros, G.</creatorcontrib><description>In [11], a new bound for the number of points on an algebraic curve over a finite field of odd order was obtained, and applied to improve previous bounds on the size of a complete arc not contained in a conic. Here, a similar approach is used to show that a complete arc in a plane of even order q has size q+2 or q−q+1 or less than q−2q+6. To obtain this result, first a new characterization of a Hermitian curve for any square q is given; more precisely, it is shown that a curve of sufficiently low degree has a certain upper bound for the number of its rational points with equality occurring in this bound only when the curve is Hermitian. Finally, another application is given concerning the degree of the curve on which a unital can lie.</description><identifier>ISSN: 1071-5797</identifier><identifier>EISSN: 1090-2465</identifier><identifier>DOI: 10.1006/ffta.1999.0260</identifier><language>eng</language><publisher>Elsevier Inc</publisher><ispartof>Finite fields and their applications, 1999-10, Vol.5 (4), p.393-408</ispartof><rights>1999 Academic Press</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c326t-e8aeb1851d42bae676aede1eb78306fae758c5dea9a33e0f881f3261b45c2f213</citedby><cites>FETCH-LOGICAL-c326t-e8aeb1851d42bae676aede1eb78306fae758c5dea9a33e0f881f3261b45c2f213</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1006/ffta.1999.0260$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Hirschfeld, J.W.P.</creatorcontrib><creatorcontrib>Korchmáros, G.</creatorcontrib><title>Arcs and Curves over a Finite Field</title><title>Finite fields and their applications</title><description>In [11], a new bound for the number of points on an algebraic curve over a finite field of odd order was obtained, and applied to improve previous bounds on the size of a complete arc not contained in a conic. Here, a similar approach is used to show that a complete arc in a plane of even order q has size q+2 or q−q+1 or less than q−2q+6. To obtain this result, first a new characterization of a Hermitian curve for any square q is given; more precisely, it is shown that a curve of sufficiently low degree has a certain upper bound for the number of its rational points with equality occurring in this bound only when the curve is Hermitian. Finally, another application is given concerning the degree of the curve on which a unital can lie.</description><issn>1071-5797</issn><issn>1090-2465</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><recordid>eNp1j01LxDAURYMoOI5uXRdct-YlzddyKI4jDLjRdUiTF4iMrSS14L-3Zdy6undzLvcQcg-0AUrlY4yTa8AY01Am6QXZADW0Zq0Ul2tXUAtl1DW5KeWDUgDB9YY87LIvlRtC1X3nGUs1zpgrV-3TkCZcAk_hllxFdyp495db8r5_eusO9fH1-aXbHWvPmZxq1A570AJCy3qHUkmHAQF7pTmV0aES2ouAzjjOkUatIS4g9K3wLDLgW9Kcd30eS8kY7VdOny7_WKB2VbSrol0V7aq4APoM4PJqTpht8QkHjyFl9JMNY_oP_QUVg1a2</recordid><startdate>19991001</startdate><enddate>19991001</enddate><creator>Hirschfeld, J.W.P.</creator><creator>Korchmáros, G.</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19991001</creationdate><title>Arcs and Curves over a Finite Field</title><author>Hirschfeld, J.W.P. ; Korchmáros, G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c326t-e8aeb1851d42bae676aede1eb78306fae758c5dea9a33e0f881f3261b45c2f213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hirschfeld, J.W.P.</creatorcontrib><creatorcontrib>Korchmáros, G.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><jtitle>Finite fields and their applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hirschfeld, J.W.P.</au><au>Korchmáros, G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Arcs and Curves over a Finite Field</atitle><jtitle>Finite fields and their applications</jtitle><date>1999-10-01</date><risdate>1999</risdate><volume>5</volume><issue>4</issue><spage>393</spage><epage>408</epage><pages>393-408</pages><issn>1071-5797</issn><eissn>1090-2465</eissn><abstract>In [11], a new bound for the number of points on an algebraic curve over a finite field of odd order was obtained, and applied to improve previous bounds on the size of a complete arc not contained in a conic. Here, a similar approach is used to show that a complete arc in a plane of even order q has size q+2 or q−q+1 or less than q−2q+6. To obtain this result, first a new characterization of a Hermitian curve for any square q is given; more precisely, it is shown that a curve of sufficiently low degree has a certain upper bound for the number of its rational points with equality occurring in this bound only when the curve is Hermitian. Finally, another application is given concerning the degree of the curve on which a unital can lie.</abstract><pub>Elsevier Inc</pub><doi>10.1006/ffta.1999.0260</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1071-5797
ispartof Finite fields and their applications, 1999-10, Vol.5 (4), p.393-408
issn 1071-5797
1090-2465
language eng
recordid cdi_crossref_primary_10_1006_ffta_1999_0260
source Elsevier ScienceDirect Journals Complete; EZB-FREE-00999 freely available EZB journals
title Arcs and Curves over a Finite Field
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T20%3A30%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Arcs%20and%20Curves%20over%20a%20Finite%20Field&rft.jtitle=Finite%20fields%20and%20their%20applications&rft.au=Hirschfeld,%20J.W.P.&rft.date=1999-10-01&rft.volume=5&rft.issue=4&rft.spage=393&rft.epage=408&rft.pages=393-408&rft.issn=1071-5797&rft.eissn=1090-2465&rft_id=info:doi/10.1006/ffta.1999.0260&rft_dat=%3Celsevier_cross%3ES1071579799902605%3C/elsevier_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S1071579799902605&rfr_iscdi=true