Arcs and Curves over a Finite Field
In [11], a new bound for the number of points on an algebraic curve over a finite field of odd order was obtained, and applied to improve previous bounds on the size of a complete arc not contained in a conic. Here, a similar approach is used to show that a complete arc in a plane of even order q ha...
Gespeichert in:
Veröffentlicht in: | Finite fields and their applications 1999-10, Vol.5 (4), p.393-408 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 408 |
---|---|
container_issue | 4 |
container_start_page | 393 |
container_title | Finite fields and their applications |
container_volume | 5 |
creator | Hirschfeld, J.W.P. Korchmáros, G. |
description | In [11], a new bound for the number of points on an algebraic curve over a finite field of odd order was obtained, and applied to improve previous bounds on the size of a complete arc not contained in a conic. Here, a similar approach is used to show that a complete arc in a plane of even order q has size q+2 or q−q+1 or less than q−2q+6. To obtain this result, first a new characterization of a Hermitian curve for any square q is given; more precisely, it is shown that a curve of sufficiently low degree has a certain upper bound for the number of its rational points with equality occurring in this bound only when the curve is Hermitian. Finally, another application is given concerning the degree of the curve on which a unital can lie. |
doi_str_mv | 10.1006/ffta.1999.0260 |
format | Article |
fullrecord | <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1006_ffta_1999_0260</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1071579799902605</els_id><sourcerecordid>S1071579799902605</sourcerecordid><originalsourceid>FETCH-LOGICAL-c326t-e8aeb1851d42bae676aede1eb78306fae758c5dea9a33e0f881f3261b45c2f213</originalsourceid><addsrcrecordid>eNp1j01LxDAURYMoOI5uXRdct-YlzddyKI4jDLjRdUiTF4iMrSS14L-3Zdy6undzLvcQcg-0AUrlY4yTa8AY01Am6QXZADW0Zq0Ul2tXUAtl1DW5KeWDUgDB9YY87LIvlRtC1X3nGUs1zpgrV-3TkCZcAk_hllxFdyp495db8r5_eusO9fH1-aXbHWvPmZxq1A570AJCy3qHUkmHAQF7pTmV0aES2ouAzjjOkUatIS4g9K3wLDLgW9Kcd30eS8kY7VdOny7_WKB2VbSrol0V7aq4APoM4PJqTpht8QkHjyFl9JMNY_oP_QUVg1a2</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Arcs and Curves over a Finite Field</title><source>Elsevier ScienceDirect Journals Complete</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Hirschfeld, J.W.P. ; Korchmáros, G.</creator><creatorcontrib>Hirschfeld, J.W.P. ; Korchmáros, G.</creatorcontrib><description>In [11], a new bound for the number of points on an algebraic curve over a finite field of odd order was obtained, and applied to improve previous bounds on the size of a complete arc not contained in a conic. Here, a similar approach is used to show that a complete arc in a plane of even order q has size q+2 or q−q+1 or less than q−2q+6. To obtain this result, first a new characterization of a Hermitian curve for any square q is given; more precisely, it is shown that a curve of sufficiently low degree has a certain upper bound for the number of its rational points with equality occurring in this bound only when the curve is Hermitian. Finally, another application is given concerning the degree of the curve on which a unital can lie.</description><identifier>ISSN: 1071-5797</identifier><identifier>EISSN: 1090-2465</identifier><identifier>DOI: 10.1006/ffta.1999.0260</identifier><language>eng</language><publisher>Elsevier Inc</publisher><ispartof>Finite fields and their applications, 1999-10, Vol.5 (4), p.393-408</ispartof><rights>1999 Academic Press</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c326t-e8aeb1851d42bae676aede1eb78306fae758c5dea9a33e0f881f3261b45c2f213</citedby><cites>FETCH-LOGICAL-c326t-e8aeb1851d42bae676aede1eb78306fae758c5dea9a33e0f881f3261b45c2f213</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1006/ffta.1999.0260$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Hirschfeld, J.W.P.</creatorcontrib><creatorcontrib>Korchmáros, G.</creatorcontrib><title>Arcs and Curves over a Finite Field</title><title>Finite fields and their applications</title><description>In [11], a new bound for the number of points on an algebraic curve over a finite field of odd order was obtained, and applied to improve previous bounds on the size of a complete arc not contained in a conic. Here, a similar approach is used to show that a complete arc in a plane of even order q has size q+2 or q−q+1 or less than q−2q+6. To obtain this result, first a new characterization of a Hermitian curve for any square q is given; more precisely, it is shown that a curve of sufficiently low degree has a certain upper bound for the number of its rational points with equality occurring in this bound only when the curve is Hermitian. Finally, another application is given concerning the degree of the curve on which a unital can lie.</description><issn>1071-5797</issn><issn>1090-2465</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><recordid>eNp1j01LxDAURYMoOI5uXRdct-YlzddyKI4jDLjRdUiTF4iMrSS14L-3Zdy6undzLvcQcg-0AUrlY4yTa8AY01Am6QXZADW0Zq0Ul2tXUAtl1DW5KeWDUgDB9YY87LIvlRtC1X3nGUs1zpgrV-3TkCZcAk_hllxFdyp495db8r5_eusO9fH1-aXbHWvPmZxq1A570AJCy3qHUkmHAQF7pTmV0aES2ouAzjjOkUatIS4g9K3wLDLgW9Kcd30eS8kY7VdOny7_WKB2VbSrol0V7aq4APoM4PJqTpht8QkHjyFl9JMNY_oP_QUVg1a2</recordid><startdate>19991001</startdate><enddate>19991001</enddate><creator>Hirschfeld, J.W.P.</creator><creator>Korchmáros, G.</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19991001</creationdate><title>Arcs and Curves over a Finite Field</title><author>Hirschfeld, J.W.P. ; Korchmáros, G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c326t-e8aeb1851d42bae676aede1eb78306fae758c5dea9a33e0f881f3261b45c2f213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hirschfeld, J.W.P.</creatorcontrib><creatorcontrib>Korchmáros, G.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><jtitle>Finite fields and their applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hirschfeld, J.W.P.</au><au>Korchmáros, G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Arcs and Curves over a Finite Field</atitle><jtitle>Finite fields and their applications</jtitle><date>1999-10-01</date><risdate>1999</risdate><volume>5</volume><issue>4</issue><spage>393</spage><epage>408</epage><pages>393-408</pages><issn>1071-5797</issn><eissn>1090-2465</eissn><abstract>In [11], a new bound for the number of points on an algebraic curve over a finite field of odd order was obtained, and applied to improve previous bounds on the size of a complete arc not contained in a conic. Here, a similar approach is used to show that a complete arc in a plane of even order q has size q+2 or q−q+1 or less than q−2q+6. To obtain this result, first a new characterization of a Hermitian curve for any square q is given; more precisely, it is shown that a curve of sufficiently low degree has a certain upper bound for the number of its rational points with equality occurring in this bound only when the curve is Hermitian. Finally, another application is given concerning the degree of the curve on which a unital can lie.</abstract><pub>Elsevier Inc</pub><doi>10.1006/ffta.1999.0260</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1071-5797 |
ispartof | Finite fields and their applications, 1999-10, Vol.5 (4), p.393-408 |
issn | 1071-5797 1090-2465 |
language | eng |
recordid | cdi_crossref_primary_10_1006_ffta_1999_0260 |
source | Elsevier ScienceDirect Journals Complete; EZB-FREE-00999 freely available EZB journals |
title | Arcs and Curves over a Finite Field |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T20%3A30%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Arcs%20and%20Curves%20over%20a%20Finite%20Field&rft.jtitle=Finite%20fields%20and%20their%20applications&rft.au=Hirschfeld,%20J.W.P.&rft.date=1999-10-01&rft.volume=5&rft.issue=4&rft.spage=393&rft.epage=408&rft.pages=393-408&rft.issn=1071-5797&rft.eissn=1090-2465&rft_id=info:doi/10.1006/ffta.1999.0260&rft_dat=%3Celsevier_cross%3ES1071579799902605%3C/elsevier_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S1071579799902605&rfr_iscdi=true |