Subsets with a Small Sum II: the Critical Pair Problem
A basic problem raised by Kneser was to describe all the finite subsets A, B of an abelian group G such that | A+B | ≤ | A | + | B | − 1. Let G be an abelian group. The description of the pairsA , B⊂G such that | A+B | = | A | + | B | − 1 < |G | was considered in additive group theory. Vosper (19...
Gespeichert in:
Veröffentlicht in: | European journal of combinatorics 2000-02, Vol.21 (2), p.231-239 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 239 |
---|---|
container_issue | 2 |
container_start_page | 231 |
container_title | European journal of combinatorics |
container_volume | 21 |
creator | Ould Hamidoune, Yahya |
description | A basic problem raised by Kneser was to describe all the finite subsets A, B of an abelian group G such that | A+B | ≤ | A | + | B | − 1. Let G be an abelian group. The description of the pairsA , B⊂G such that | A+B | = | A | + | B | − 1 < |G | was considered in additive group theory. Vosper (1956) solved this problem completely for groups with a prime order. Kempermann’s theory for small sums describes the structure of these pairs, ifA+B is aperiodic or if there exists a uniquely expressible element inA+B. In this paper we study the same question with a fixed subset B satisfying the inequality: for all A such that 1 ≤ | A | |
doi_str_mv | 10.1006/eujc.1999.0340 |
format | Article |
fullrecord | <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1006_eujc_1999_0340</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0195669899903402</els_id><sourcerecordid>S0195669899903402</sourcerecordid><originalsourceid>FETCH-LOGICAL-c326t-d769b47e4b9a2d250beafe11722d66a403f78fcac7429afc1a7806d0f06c38b3</originalsourceid><addsrcrecordid>eNp1j01LxDAURYMoWEe3rvMHWl-aNmncSfGjMOBAZx_S9IXJ0FpJWsV_75Rx6-rezbncQ8g9g4wBiAdcjjZjSqkMeAEXJGGgylQpyS5JAuzUhVDVNbmJ8QjAWMl5QkS7dBHnSL_9fKCGtqMZBtouI22aRzofkNbBz96age6MD3QXpm7A8ZZcOTNEvPvLDdm_PO_rt3T7_trUT9vU8lzMaS-F6gqJRadM3ucldGgcMibzvBfCFMCdrJw1Vha5Ms4yIysQPTgQllcd35DsPGvDFGNApz-DH0340Qz0Kq1Xab1K61X6BFRnAE-nvjwGHa3HD4u9D2hn3U_-P_QXLgRc5Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Subsets with a Small Sum II: the Critical Pair Problem</title><source>Elsevier ScienceDirect Journals Complete - AutoHoldings</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Ould Hamidoune, Yahya</creator><creatorcontrib>Ould Hamidoune, Yahya</creatorcontrib><description>A basic problem raised by Kneser was to describe all the finite subsets A, B of an abelian group G such that | A+B | ≤ | A | + | B | − 1. Let G be an abelian group. The description of the pairsA , B⊂G such that | A+B | = | A | + | B | − 1 < |G | was considered in additive group theory. Vosper (1956) solved this problem completely for groups with a prime order. Kempermann’s theory for small sums describes the structure of these pairs, ifA+B is aperiodic or if there exists a uniquely expressible element inA+B. In this paper we study the same question with a fixed subset B satisfying the inequality: for all A such that 1 ≤ | A | <∞, |A+B | ≥min(| G |, | A | + |B | − 1). We obtain a recursive description for the subsets A such that |A+B | ≤ | A | + | B | − 1. As corollary of our description, we obtain the following result which implies some limitations of Kempermann’s theory. Suppose that B is neither a coprogression nor almost periodic and that 2 ≤ |A | ≤ | G | − | B | − 1. If |A+B | = | A | + | B | − 1, then A is periodic and A+B contains no unique expression elements. The results obtained in this section are strongly based on those obtained in Part I.</description><identifier>ISSN: 0195-6698</identifier><identifier>EISSN: 1095-9971</identifier><identifier>DOI: 10.1006/eujc.1999.0340</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><ispartof>European journal of combinatorics, 2000-02, Vol.21 (2), p.231-239</ispartof><rights>2000 Academic Press</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c326t-d769b47e4b9a2d250beafe11722d66a403f78fcac7429afc1a7806d0f06c38b3</citedby><cites>FETCH-LOGICAL-c326t-d769b47e4b9a2d250beafe11722d66a403f78fcac7429afc1a7806d0f06c38b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1006/eujc.1999.0340$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3548,27922,27923,45993</link.rule.ids></links><search><creatorcontrib>Ould Hamidoune, Yahya</creatorcontrib><title>Subsets with a Small Sum II: the Critical Pair Problem</title><title>European journal of combinatorics</title><description>A basic problem raised by Kneser was to describe all the finite subsets A, B of an abelian group G such that | A+B | ≤ | A | + | B | − 1. Let G be an abelian group. The description of the pairsA , B⊂G such that | A+B | = | A | + | B | − 1 < |G | was considered in additive group theory. Vosper (1956) solved this problem completely for groups with a prime order. Kempermann’s theory for small sums describes the structure of these pairs, ifA+B is aperiodic or if there exists a uniquely expressible element inA+B. In this paper we study the same question with a fixed subset B satisfying the inequality: for all A such that 1 ≤ | A | <∞, |A+B | ≥min(| G |, | A | + |B | − 1). We obtain a recursive description for the subsets A such that |A+B | ≤ | A | + | B | − 1. As corollary of our description, we obtain the following result which implies some limitations of Kempermann’s theory. Suppose that B is neither a coprogression nor almost periodic and that 2 ≤ |A | ≤ | G | − | B | − 1. If |A+B | = | A | + | B | − 1, then A is periodic and A+B contains no unique expression elements. The results obtained in this section are strongly based on those obtained in Part I.</description><issn>0195-6698</issn><issn>1095-9971</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><recordid>eNp1j01LxDAURYMoWEe3rvMHWl-aNmncSfGjMOBAZx_S9IXJ0FpJWsV_75Rx6-rezbncQ8g9g4wBiAdcjjZjSqkMeAEXJGGgylQpyS5JAuzUhVDVNbmJ8QjAWMl5QkS7dBHnSL_9fKCGtqMZBtouI22aRzofkNbBz96age6MD3QXpm7A8ZZcOTNEvPvLDdm_PO_rt3T7_trUT9vU8lzMaS-F6gqJRadM3ucldGgcMibzvBfCFMCdrJw1Vha5Ms4yIysQPTgQllcd35DsPGvDFGNApz-DH0340Qz0Kq1Xab1K61X6BFRnAE-nvjwGHa3HD4u9D2hn3U_-P_QXLgRc5Q</recordid><startdate>20000201</startdate><enddate>20000201</enddate><creator>Ould Hamidoune, Yahya</creator><general>Elsevier Ltd</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20000201</creationdate><title>Subsets with a Small Sum II: the Critical Pair Problem</title><author>Ould Hamidoune, Yahya</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c326t-d769b47e4b9a2d250beafe11722d66a403f78fcac7429afc1a7806d0f06c38b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ould Hamidoune, Yahya</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><jtitle>European journal of combinatorics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ould Hamidoune, Yahya</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Subsets with a Small Sum II: the Critical Pair Problem</atitle><jtitle>European journal of combinatorics</jtitle><date>2000-02-01</date><risdate>2000</risdate><volume>21</volume><issue>2</issue><spage>231</spage><epage>239</epage><pages>231-239</pages><issn>0195-6698</issn><eissn>1095-9971</eissn><abstract>A basic problem raised by Kneser was to describe all the finite subsets A, B of an abelian group G such that | A+B | ≤ | A | + | B | − 1. Let G be an abelian group. The description of the pairsA , B⊂G such that | A+B | = | A | + | B | − 1 < |G | was considered in additive group theory. Vosper (1956) solved this problem completely for groups with a prime order. Kempermann’s theory for small sums describes the structure of these pairs, ifA+B is aperiodic or if there exists a uniquely expressible element inA+B. In this paper we study the same question with a fixed subset B satisfying the inequality: for all A such that 1 ≤ | A | <∞, |A+B | ≥min(| G |, | A | + |B | − 1). We obtain a recursive description for the subsets A such that |A+B | ≤ | A | + | B | − 1. As corollary of our description, we obtain the following result which implies some limitations of Kempermann’s theory. Suppose that B is neither a coprogression nor almost periodic and that 2 ≤ |A | ≤ | G | − | B | − 1. If |A+B | = | A | + | B | − 1, then A is periodic and A+B contains no unique expression elements. The results obtained in this section are strongly based on those obtained in Part I.</abstract><pub>Elsevier Ltd</pub><doi>10.1006/eujc.1999.0340</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0195-6698 |
ispartof | European journal of combinatorics, 2000-02, Vol.21 (2), p.231-239 |
issn | 0195-6698 1095-9971 |
language | eng |
recordid | cdi_crossref_primary_10_1006_eujc_1999_0340 |
source | Elsevier ScienceDirect Journals Complete - AutoHoldings; EZB-FREE-00999 freely available EZB journals |
title | Subsets with a Small Sum II: the Critical Pair Problem |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T04%3A59%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Subsets%20with%20a%20Small%20Sum%20II:%20the%20Critical%20Pair%20Problem&rft.jtitle=European%20journal%20of%20combinatorics&rft.au=Ould%20Hamidoune,%20Yahya&rft.date=2000-02-01&rft.volume=21&rft.issue=2&rft.spage=231&rft.epage=239&rft.pages=231-239&rft.issn=0195-6698&rft.eissn=1095-9971&rft_id=info:doi/10.1006/eujc.1999.0340&rft_dat=%3Celsevier_cross%3ES0195669899903402%3C/elsevier_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0195669899903402&rfr_iscdi=true |