Replicative Response, Immunophenotype, and Functional Activity of Monocyte-Derived versus CD34+-Derived Dendritic Cells Following Exposure to Various Expansion and Maturational Stimuli
Dendritic cells (DCs), generated ex vivo from blood mononuclear cells (PBMC) or CD34+ stem cells, are being used to develop novel immunotherapies. To establish optimal DC generation, a direct comparison of the optimal cell source, culture conditions, and maturation stimuli was performed, utilizing p...
Gespeichert in:
Veröffentlicht in: | Clinical immunology (Orlando, Fla.) Fla.), 2001-02, Vol.98 (2), p.280-292 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 292 |
---|---|
container_issue | 2 |
container_start_page | 280 |
container_title | Clinical immunology (Orlando, Fla.) |
container_volume | 98 |
creator | Chen, Bohao Stiff, Patrick Sloan, George Kash, Joseph Manjunath, Rajini Pathasarathy, Mala Oldenburg, David Foreman, Kimberly E. Nickoloff, Brian J. |
description | Dendritic cells (DCs), generated ex vivo from blood mononuclear cells (PBMC) or CD34+ stem cells, are being used to develop novel immunotherapies. To establish optimal DC generation, a direct comparison of the optimal cell source, culture conditions, and maturation stimuli was performed, utilizing phenotypic and functional assays as end points. Plastic adherent monocytes from PBMC were expanded in a serum-free medium (X-Vivo 10) for 7 days using GM-CSF/IL-4; CD34+ cells were expanded for 14 days using GM-CSF/IL-4/ Flt3L, in either X-Vivo 10 alone or with albumin or autologous plasma. Expanded DC from both cell sources were matured for 7 days with CD40L or IFN-α/TNF-α. Starting from 2 × 107 monocytes, the optimal expansion/maturation process yielded 1.73 ± 0.52 × 106 CD86+ DC. Optimal expansion of CD34+ cells (83.9 ± 25.0-fold) was achieved using X-Vivo 10 with 5% plasma, matured with CD40L, and yielded 10.68 ± 2.72 × 106 CD86+ DC from 1 × 106 CD34+ cells. Mature DC from PBMC or CD34+ cells had similar enhanced expression of MHC class II HLA-DR, CD80, CD83, and CD86 and were potent stimulators of mixed lymphocyte reactions. Prior to maturation, all groups of DC actively phagocytosed apoptotic melanoma cells (approximately 50% of HLA-DR+). CD34+ DC matured with CD40L or IFN-α/TNF-α had reduced phagocytic capability (34 and 31% of HLA-DR+ DC, respectively). Similar expansion and functional activity was found using cryopreserved DC precursors, cultured in gas permeable bags. We conclude that both cell lineages produce potent mature DC, permitting exploration of the optimal clinical strategy to trigger anti-tumor immune responses in patients with malignancies. |
doi_str_mv | 10.1006/clim.2000.4968 |
format | Article |
fullrecord | <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1006_clim_2000_4968</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1521661600949684</els_id><sourcerecordid>S1521661600949684</sourcerecordid><originalsourceid>FETCH-LOGICAL-c435t-5bbd8d37df088bfe536a6e2be1df111d556c296a7b423177bdad672bed625afe3</originalsourceid><addsrcrecordid>eNp1kU9v3CAQxVHUKn977bHi0FvjLWCDvcdoN5tESlQpaXu1MIxbKgwW4G33m_Xjlc1aaS89MRp-bx7MQ-gtJQtKiPiorBkWjBCyqJaiOUKnlDNa1KTkr-ZaCCpO0FmMPzLFGRPH6IRSKuiyEafo9yOM1iiZzBbwI8TRuwiX-G4YJufH7-B82o25IZ3Gm8mpZLyTFl_lYmvSDvseP3jn1S5BsYaQp2i8hRCniFfrsvrw0lyD08Eko_AKrI144631P437hq9_jT5OAXDy-KsMxmdt7kkXs9ez8YNMU5Cz9VMyw2TNBXrdSxvhzXyeoy-b68-r2-L-083d6uq-UFXJU8G7Tje6rHVPmqbrgZdCCmAdUN3nLWjOhWJLIeuuYiWt605LLep8rwXjsofyHC0Oc1XwMQbo2zGYQYZdS0m7j6DdR9DuI2j3EWTBu4NgnLoB9F983nkG3s-AjEraPkinTPyHq1hd0Yw1Bwzy77YGQhuVAadAmwAqtdqb_z3hD84zp1Y</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Replicative Response, Immunophenotype, and Functional Activity of Monocyte-Derived versus CD34+-Derived Dendritic Cells Following Exposure to Various Expansion and Maturational Stimuli</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Chen, Bohao ; Stiff, Patrick ; Sloan, George ; Kash, Joseph ; Manjunath, Rajini ; Pathasarathy, Mala ; Oldenburg, David ; Foreman, Kimberly E. ; Nickoloff, Brian J.</creator><creatorcontrib>Chen, Bohao ; Stiff, Patrick ; Sloan, George ; Kash, Joseph ; Manjunath, Rajini ; Pathasarathy, Mala ; Oldenburg, David ; Foreman, Kimberly E. ; Nickoloff, Brian J.</creatorcontrib><description>Dendritic cells (DCs), generated ex vivo from blood mononuclear cells (PBMC) or CD34+ stem cells, are being used to develop novel immunotherapies. To establish optimal DC generation, a direct comparison of the optimal cell source, culture conditions, and maturation stimuli was performed, utilizing phenotypic and functional assays as end points. Plastic adherent monocytes from PBMC were expanded in a serum-free medium (X-Vivo 10) for 7 days using GM-CSF/IL-4; CD34+ cells were expanded for 14 days using GM-CSF/IL-4/ Flt3L, in either X-Vivo 10 alone or with albumin or autologous plasma. Expanded DC from both cell sources were matured for 7 days with CD40L or IFN-α/TNF-α. Starting from 2 × 107 monocytes, the optimal expansion/maturation process yielded 1.73 ± 0.52 × 106 CD86+ DC. Optimal expansion of CD34+ cells (83.9 ± 25.0-fold) was achieved using X-Vivo 10 with 5% plasma, matured with CD40L, and yielded 10.68 ± 2.72 × 106 CD86+ DC from 1 × 106 CD34+ cells. Mature DC from PBMC or CD34+ cells had similar enhanced expression of MHC class II HLA-DR, CD80, CD83, and CD86 and were potent stimulators of mixed lymphocyte reactions. Prior to maturation, all groups of DC actively phagocytosed apoptotic melanoma cells (approximately 50% of HLA-DR+). CD34+ DC matured with CD40L or IFN-α/TNF-α had reduced phagocytic capability (34 and 31% of HLA-DR+ DC, respectively). Similar expansion and functional activity was found using cryopreserved DC precursors, cultured in gas permeable bags. We conclude that both cell lineages produce potent mature DC, permitting exploration of the optimal clinical strategy to trigger anti-tumor immune responses in patients with malignancies.</description><identifier>ISSN: 1521-6616</identifier><identifier>EISSN: 1521-7035</identifier><identifier>DOI: 10.1006/clim.2000.4968</identifier><identifier>PMID: 11161986</identifier><identifier>CODEN: CLIIFY</identifier><language>eng</language><publisher>San Diego, CA: Elsevier Inc</publisher><subject>Antigens, CD - biosynthesis ; Antigens, CD - genetics ; Antigens, CD34 - analysis ; Antineoplastic agents ; B7-1 Antigen - biosynthesis ; B7-1 Antigen - genetics ; B7-2 Antigen ; Biological and medical sciences ; CD34 ; CD40 Ligand - pharmacology ; CD40L ; CD83 Antigen ; Cell Differentiation - drug effects ; Cell Division - drug effects ; Cell Lineage ; Cells, Cultured ; dendritic cells ; Dendritic Cells - chemistry ; Dendritic Cells - cytology ; Dendritic Cells - drug effects ; Dendritic Cells - physiology ; Filgrastim ; Gene Expression Regulation - drug effects ; Gene Expression Regulation, Neoplastic - drug effects ; Genes, MHC Class II ; Granulocyte Colony-Stimulating Factor - pharmacology ; Hematopoietic Stem Cell Mobilization ; Hematopoietic Stem Cells - cytology ; Hematopoietic Stem Cells - drug effects ; HLA-DR Antigens - biosynthesis ; Humans ; Immunoglobulins - biosynthesis ; Immunoglobulins - genetics ; Immunophenotyping ; Immunotherapy ; Interferon-alpha - pharmacology ; Leukapheresis ; Lymphocyte Culture Test, Mixed ; Lymphoma, Non-Hodgkin - blood ; Medical sciences ; Membrane Glycoproteins - biosynthesis ; Membrane Glycoproteins - genetics ; Membrane Proteins - pharmacology ; monocytes ; Monocytes - cytology ; Monocytes - drug effects ; Multiple Myeloma - blood ; Phagocytosis - drug effects ; Pharmacology. Drug treatments ; Recombinant Proteins - pharmacology ; Tumor Necrosis Factor-alpha - pharmacology ; vaccines</subject><ispartof>Clinical immunology (Orlando, Fla.), 2001-02, Vol.98 (2), p.280-292</ispartof><rights>2000 Academic Press</rights><rights>2001 INIST-CNRS</rights><rights>Copyright 2000 Academic Press.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c435t-5bbd8d37df088bfe536a6e2be1df111d556c296a7b423177bdad672bed625afe3</citedby><cites>FETCH-LOGICAL-c435t-5bbd8d37df088bfe536a6e2be1df111d556c296a7b423177bdad672bed625afe3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1521661600949684$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=1142741$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11161986$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chen, Bohao</creatorcontrib><creatorcontrib>Stiff, Patrick</creatorcontrib><creatorcontrib>Sloan, George</creatorcontrib><creatorcontrib>Kash, Joseph</creatorcontrib><creatorcontrib>Manjunath, Rajini</creatorcontrib><creatorcontrib>Pathasarathy, Mala</creatorcontrib><creatorcontrib>Oldenburg, David</creatorcontrib><creatorcontrib>Foreman, Kimberly E.</creatorcontrib><creatorcontrib>Nickoloff, Brian J.</creatorcontrib><title>Replicative Response, Immunophenotype, and Functional Activity of Monocyte-Derived versus CD34+-Derived Dendritic Cells Following Exposure to Various Expansion and Maturational Stimuli</title><title>Clinical immunology (Orlando, Fla.)</title><addtitle>Clin Immunol</addtitle><description>Dendritic cells (DCs), generated ex vivo from blood mononuclear cells (PBMC) or CD34+ stem cells, are being used to develop novel immunotherapies. To establish optimal DC generation, a direct comparison of the optimal cell source, culture conditions, and maturation stimuli was performed, utilizing phenotypic and functional assays as end points. Plastic adherent monocytes from PBMC were expanded in a serum-free medium (X-Vivo 10) for 7 days using GM-CSF/IL-4; CD34+ cells were expanded for 14 days using GM-CSF/IL-4/ Flt3L, in either X-Vivo 10 alone or with albumin or autologous plasma. Expanded DC from both cell sources were matured for 7 days with CD40L or IFN-α/TNF-α. Starting from 2 × 107 monocytes, the optimal expansion/maturation process yielded 1.73 ± 0.52 × 106 CD86+ DC. Optimal expansion of CD34+ cells (83.9 ± 25.0-fold) was achieved using X-Vivo 10 with 5% plasma, matured with CD40L, and yielded 10.68 ± 2.72 × 106 CD86+ DC from 1 × 106 CD34+ cells. Mature DC from PBMC or CD34+ cells had similar enhanced expression of MHC class II HLA-DR, CD80, CD83, and CD86 and were potent stimulators of mixed lymphocyte reactions. Prior to maturation, all groups of DC actively phagocytosed apoptotic melanoma cells (approximately 50% of HLA-DR+). CD34+ DC matured with CD40L or IFN-α/TNF-α had reduced phagocytic capability (34 and 31% of HLA-DR+ DC, respectively). Similar expansion and functional activity was found using cryopreserved DC precursors, cultured in gas permeable bags. We conclude that both cell lineages produce potent mature DC, permitting exploration of the optimal clinical strategy to trigger anti-tumor immune responses in patients with malignancies.</description><subject>Antigens, CD - biosynthesis</subject><subject>Antigens, CD - genetics</subject><subject>Antigens, CD34 - analysis</subject><subject>Antineoplastic agents</subject><subject>B7-1 Antigen - biosynthesis</subject><subject>B7-1 Antigen - genetics</subject><subject>B7-2 Antigen</subject><subject>Biological and medical sciences</subject><subject>CD34</subject><subject>CD40 Ligand - pharmacology</subject><subject>CD40L</subject><subject>CD83 Antigen</subject><subject>Cell Differentiation - drug effects</subject><subject>Cell Division - drug effects</subject><subject>Cell Lineage</subject><subject>Cells, Cultured</subject><subject>dendritic cells</subject><subject>Dendritic Cells - chemistry</subject><subject>Dendritic Cells - cytology</subject><subject>Dendritic Cells - drug effects</subject><subject>Dendritic Cells - physiology</subject><subject>Filgrastim</subject><subject>Gene Expression Regulation - drug effects</subject><subject>Gene Expression Regulation, Neoplastic - drug effects</subject><subject>Genes, MHC Class II</subject><subject>Granulocyte Colony-Stimulating Factor - pharmacology</subject><subject>Hematopoietic Stem Cell Mobilization</subject><subject>Hematopoietic Stem Cells - cytology</subject><subject>Hematopoietic Stem Cells - drug effects</subject><subject>HLA-DR Antigens - biosynthesis</subject><subject>Humans</subject><subject>Immunoglobulins - biosynthesis</subject><subject>Immunoglobulins - genetics</subject><subject>Immunophenotyping</subject><subject>Immunotherapy</subject><subject>Interferon-alpha - pharmacology</subject><subject>Leukapheresis</subject><subject>Lymphocyte Culture Test, Mixed</subject><subject>Lymphoma, Non-Hodgkin - blood</subject><subject>Medical sciences</subject><subject>Membrane Glycoproteins - biosynthesis</subject><subject>Membrane Glycoproteins - genetics</subject><subject>Membrane Proteins - pharmacology</subject><subject>monocytes</subject><subject>Monocytes - cytology</subject><subject>Monocytes - drug effects</subject><subject>Multiple Myeloma - blood</subject><subject>Phagocytosis - drug effects</subject><subject>Pharmacology. Drug treatments</subject><subject>Recombinant Proteins - pharmacology</subject><subject>Tumor Necrosis Factor-alpha - pharmacology</subject><subject>vaccines</subject><issn>1521-6616</issn><issn>1521-7035</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kU9v3CAQxVHUKn977bHi0FvjLWCDvcdoN5tESlQpaXu1MIxbKgwW4G33m_Xjlc1aaS89MRp-bx7MQ-gtJQtKiPiorBkWjBCyqJaiOUKnlDNa1KTkr-ZaCCpO0FmMPzLFGRPH6IRSKuiyEafo9yOM1iiZzBbwI8TRuwiX-G4YJufH7-B82o25IZ3Gm8mpZLyTFl_lYmvSDvseP3jn1S5BsYaQp2i8hRCniFfrsvrw0lyD08Eko_AKrI144631P437hq9_jT5OAXDy-KsMxmdt7kkXs9ez8YNMU5Cz9VMyw2TNBXrdSxvhzXyeoy-b68-r2-L-083d6uq-UFXJU8G7Tje6rHVPmqbrgZdCCmAdUN3nLWjOhWJLIeuuYiWt605LLep8rwXjsofyHC0Oc1XwMQbo2zGYQYZdS0m7j6DdR9DuI2j3EWTBu4NgnLoB9F983nkG3s-AjEraPkinTPyHq1hd0Yw1Bwzy77YGQhuVAadAmwAqtdqb_z3hD84zp1Y</recordid><startdate>20010201</startdate><enddate>20010201</enddate><creator>Chen, Bohao</creator><creator>Stiff, Patrick</creator><creator>Sloan, George</creator><creator>Kash, Joseph</creator><creator>Manjunath, Rajini</creator><creator>Pathasarathy, Mala</creator><creator>Oldenburg, David</creator><creator>Foreman, Kimberly E.</creator><creator>Nickoloff, Brian J.</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20010201</creationdate><title>Replicative Response, Immunophenotype, and Functional Activity of Monocyte-Derived versus CD34+-Derived Dendritic Cells Following Exposure to Various Expansion and Maturational Stimuli</title><author>Chen, Bohao ; Stiff, Patrick ; Sloan, George ; Kash, Joseph ; Manjunath, Rajini ; Pathasarathy, Mala ; Oldenburg, David ; Foreman, Kimberly E. ; Nickoloff, Brian J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c435t-5bbd8d37df088bfe536a6e2be1df111d556c296a7b423177bdad672bed625afe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Antigens, CD - biosynthesis</topic><topic>Antigens, CD - genetics</topic><topic>Antigens, CD34 - analysis</topic><topic>Antineoplastic agents</topic><topic>B7-1 Antigen - biosynthesis</topic><topic>B7-1 Antigen - genetics</topic><topic>B7-2 Antigen</topic><topic>Biological and medical sciences</topic><topic>CD34</topic><topic>CD40 Ligand - pharmacology</topic><topic>CD40L</topic><topic>CD83 Antigen</topic><topic>Cell Differentiation - drug effects</topic><topic>Cell Division - drug effects</topic><topic>Cell Lineage</topic><topic>Cells, Cultured</topic><topic>dendritic cells</topic><topic>Dendritic Cells - chemistry</topic><topic>Dendritic Cells - cytology</topic><topic>Dendritic Cells - drug effects</topic><topic>Dendritic Cells - physiology</topic><topic>Filgrastim</topic><topic>Gene Expression Regulation - drug effects</topic><topic>Gene Expression Regulation, Neoplastic - drug effects</topic><topic>Genes, MHC Class II</topic><topic>Granulocyte Colony-Stimulating Factor - pharmacology</topic><topic>Hematopoietic Stem Cell Mobilization</topic><topic>Hematopoietic Stem Cells - cytology</topic><topic>Hematopoietic Stem Cells - drug effects</topic><topic>HLA-DR Antigens - biosynthesis</topic><topic>Humans</topic><topic>Immunoglobulins - biosynthesis</topic><topic>Immunoglobulins - genetics</topic><topic>Immunophenotyping</topic><topic>Immunotherapy</topic><topic>Interferon-alpha - pharmacology</topic><topic>Leukapheresis</topic><topic>Lymphocyte Culture Test, Mixed</topic><topic>Lymphoma, Non-Hodgkin - blood</topic><topic>Medical sciences</topic><topic>Membrane Glycoproteins - biosynthesis</topic><topic>Membrane Glycoproteins - genetics</topic><topic>Membrane Proteins - pharmacology</topic><topic>monocytes</topic><topic>Monocytes - cytology</topic><topic>Monocytes - drug effects</topic><topic>Multiple Myeloma - blood</topic><topic>Phagocytosis - drug effects</topic><topic>Pharmacology. Drug treatments</topic><topic>Recombinant Proteins - pharmacology</topic><topic>Tumor Necrosis Factor-alpha - pharmacology</topic><topic>vaccines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Bohao</creatorcontrib><creatorcontrib>Stiff, Patrick</creatorcontrib><creatorcontrib>Sloan, George</creatorcontrib><creatorcontrib>Kash, Joseph</creatorcontrib><creatorcontrib>Manjunath, Rajini</creatorcontrib><creatorcontrib>Pathasarathy, Mala</creatorcontrib><creatorcontrib>Oldenburg, David</creatorcontrib><creatorcontrib>Foreman, Kimberly E.</creatorcontrib><creatorcontrib>Nickoloff, Brian J.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><jtitle>Clinical immunology (Orlando, Fla.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Bohao</au><au>Stiff, Patrick</au><au>Sloan, George</au><au>Kash, Joseph</au><au>Manjunath, Rajini</au><au>Pathasarathy, Mala</au><au>Oldenburg, David</au><au>Foreman, Kimberly E.</au><au>Nickoloff, Brian J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Replicative Response, Immunophenotype, and Functional Activity of Monocyte-Derived versus CD34+-Derived Dendritic Cells Following Exposure to Various Expansion and Maturational Stimuli</atitle><jtitle>Clinical immunology (Orlando, Fla.)</jtitle><addtitle>Clin Immunol</addtitle><date>2001-02-01</date><risdate>2001</risdate><volume>98</volume><issue>2</issue><spage>280</spage><epage>292</epage><pages>280-292</pages><issn>1521-6616</issn><eissn>1521-7035</eissn><coden>CLIIFY</coden><abstract>Dendritic cells (DCs), generated ex vivo from blood mononuclear cells (PBMC) or CD34+ stem cells, are being used to develop novel immunotherapies. To establish optimal DC generation, a direct comparison of the optimal cell source, culture conditions, and maturation stimuli was performed, utilizing phenotypic and functional assays as end points. Plastic adherent monocytes from PBMC were expanded in a serum-free medium (X-Vivo 10) for 7 days using GM-CSF/IL-4; CD34+ cells were expanded for 14 days using GM-CSF/IL-4/ Flt3L, in either X-Vivo 10 alone or with albumin or autologous plasma. Expanded DC from both cell sources were matured for 7 days with CD40L or IFN-α/TNF-α. Starting from 2 × 107 monocytes, the optimal expansion/maturation process yielded 1.73 ± 0.52 × 106 CD86+ DC. Optimal expansion of CD34+ cells (83.9 ± 25.0-fold) was achieved using X-Vivo 10 with 5% plasma, matured with CD40L, and yielded 10.68 ± 2.72 × 106 CD86+ DC from 1 × 106 CD34+ cells. Mature DC from PBMC or CD34+ cells had similar enhanced expression of MHC class II HLA-DR, CD80, CD83, and CD86 and were potent stimulators of mixed lymphocyte reactions. Prior to maturation, all groups of DC actively phagocytosed apoptotic melanoma cells (approximately 50% of HLA-DR+). CD34+ DC matured with CD40L or IFN-α/TNF-α had reduced phagocytic capability (34 and 31% of HLA-DR+ DC, respectively). Similar expansion and functional activity was found using cryopreserved DC precursors, cultured in gas permeable bags. We conclude that both cell lineages produce potent mature DC, permitting exploration of the optimal clinical strategy to trigger anti-tumor immune responses in patients with malignancies.</abstract><cop>San Diego, CA</cop><pub>Elsevier Inc</pub><pmid>11161986</pmid><doi>10.1006/clim.2000.4968</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1521-6616 |
ispartof | Clinical immunology (Orlando, Fla.), 2001-02, Vol.98 (2), p.280-292 |
issn | 1521-6616 1521-7035 |
language | eng |
recordid | cdi_crossref_primary_10_1006_clim_2000_4968 |
source | MEDLINE; Elsevier ScienceDirect Journals |
subjects | Antigens, CD - biosynthesis Antigens, CD - genetics Antigens, CD34 - analysis Antineoplastic agents B7-1 Antigen - biosynthesis B7-1 Antigen - genetics B7-2 Antigen Biological and medical sciences CD34 CD40 Ligand - pharmacology CD40L CD83 Antigen Cell Differentiation - drug effects Cell Division - drug effects Cell Lineage Cells, Cultured dendritic cells Dendritic Cells - chemistry Dendritic Cells - cytology Dendritic Cells - drug effects Dendritic Cells - physiology Filgrastim Gene Expression Regulation - drug effects Gene Expression Regulation, Neoplastic - drug effects Genes, MHC Class II Granulocyte Colony-Stimulating Factor - pharmacology Hematopoietic Stem Cell Mobilization Hematopoietic Stem Cells - cytology Hematopoietic Stem Cells - drug effects HLA-DR Antigens - biosynthesis Humans Immunoglobulins - biosynthesis Immunoglobulins - genetics Immunophenotyping Immunotherapy Interferon-alpha - pharmacology Leukapheresis Lymphocyte Culture Test, Mixed Lymphoma, Non-Hodgkin - blood Medical sciences Membrane Glycoproteins - biosynthesis Membrane Glycoproteins - genetics Membrane Proteins - pharmacology monocytes Monocytes - cytology Monocytes - drug effects Multiple Myeloma - blood Phagocytosis - drug effects Pharmacology. Drug treatments Recombinant Proteins - pharmacology Tumor Necrosis Factor-alpha - pharmacology vaccines |
title | Replicative Response, Immunophenotype, and Functional Activity of Monocyte-Derived versus CD34+-Derived Dendritic Cells Following Exposure to Various Expansion and Maturational Stimuli |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T00%3A57%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Replicative%20Response,%20Immunophenotype,%20and%20Functional%20Activity%20of%20Monocyte-Derived%20versus%20CD34+-Derived%20Dendritic%20Cells%20Following%20Exposure%20to%20Various%20Expansion%20and%20Maturational%20Stimuli&rft.jtitle=Clinical%20immunology%20(Orlando,%20Fla.)&rft.au=Chen,%20Bohao&rft.date=2001-02-01&rft.volume=98&rft.issue=2&rft.spage=280&rft.epage=292&rft.pages=280-292&rft.issn=1521-6616&rft.eissn=1521-7035&rft.coden=CLIIFY&rft_id=info:doi/10.1006/clim.2000.4968&rft_dat=%3Celsevier_cross%3ES1521661600949684%3C/elsevier_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/11161986&rft_els_id=S1521661600949684&rfr_iscdi=true |