Replicative Response, Immunophenotype, and Functional Activity of Monocyte-Derived versus CD34+-Derived Dendritic Cells Following Exposure to Various Expansion and Maturational Stimuli

Dendritic cells (DCs), generated ex vivo from blood mononuclear cells (PBMC) or CD34+ stem cells, are being used to develop novel immunotherapies. To establish optimal DC generation, a direct comparison of the optimal cell source, culture conditions, and maturation stimuli was performed, utilizing p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Clinical immunology (Orlando, Fla.) Fla.), 2001-02, Vol.98 (2), p.280-292
Hauptverfasser: Chen, Bohao, Stiff, Patrick, Sloan, George, Kash, Joseph, Manjunath, Rajini, Pathasarathy, Mala, Oldenburg, David, Foreman, Kimberly E., Nickoloff, Brian J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 292
container_issue 2
container_start_page 280
container_title Clinical immunology (Orlando, Fla.)
container_volume 98
creator Chen, Bohao
Stiff, Patrick
Sloan, George
Kash, Joseph
Manjunath, Rajini
Pathasarathy, Mala
Oldenburg, David
Foreman, Kimberly E.
Nickoloff, Brian J.
description Dendritic cells (DCs), generated ex vivo from blood mononuclear cells (PBMC) or CD34+ stem cells, are being used to develop novel immunotherapies. To establish optimal DC generation, a direct comparison of the optimal cell source, culture conditions, and maturation stimuli was performed, utilizing phenotypic and functional assays as end points. Plastic adherent monocytes from PBMC were expanded in a serum-free medium (X-Vivo 10) for 7 days using GM-CSF/IL-4; CD34+ cells were expanded for 14 days using GM-CSF/IL-4/ Flt3L, in either X-Vivo 10 alone or with albumin or autologous plasma. Expanded DC from both cell sources were matured for 7 days with CD40L or IFN-α/TNF-α. Starting from 2 × 107 monocytes, the optimal expansion/maturation process yielded 1.73 ± 0.52 × 106 CD86+ DC. Optimal expansion of CD34+ cells (83.9 ± 25.0-fold) was achieved using X-Vivo 10 with 5% plasma, matured with CD40L, and yielded 10.68 ± 2.72 × 106 CD86+ DC from 1 × 106 CD34+ cells. Mature DC from PBMC or CD34+ cells had similar enhanced expression of MHC class II HLA-DR, CD80, CD83, and CD86 and were potent stimulators of mixed lymphocyte reactions. Prior to maturation, all groups of DC actively phagocytosed apoptotic melanoma cells (approximately 50% of HLA-DR+). CD34+ DC matured with CD40L or IFN-α/TNF-α had reduced phagocytic capability (34 and 31% of HLA-DR+ DC, respectively). Similar expansion and functional activity was found using cryopreserved DC precursors, cultured in gas permeable bags. We conclude that both cell lineages produce potent mature DC, permitting exploration of the optimal clinical strategy to trigger anti-tumor immune responses in patients with malignancies.
doi_str_mv 10.1006/clim.2000.4968
format Article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1006_clim_2000_4968</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1521661600949684</els_id><sourcerecordid>S1521661600949684</sourcerecordid><originalsourceid>FETCH-LOGICAL-c435t-5bbd8d37df088bfe536a6e2be1df111d556c296a7b423177bdad672bed625afe3</originalsourceid><addsrcrecordid>eNp1kU9v3CAQxVHUKn977bHi0FvjLWCDvcdoN5tESlQpaXu1MIxbKgwW4G33m_Xjlc1aaS89MRp-bx7MQ-gtJQtKiPiorBkWjBCyqJaiOUKnlDNa1KTkr-ZaCCpO0FmMPzLFGRPH6IRSKuiyEafo9yOM1iiZzBbwI8TRuwiX-G4YJufH7-B82o25IZ3Gm8mpZLyTFl_lYmvSDvseP3jn1S5BsYaQp2i8hRCniFfrsvrw0lyD08Eko_AKrI144631P437hq9_jT5OAXDy-KsMxmdt7kkXs9ez8YNMU5Cz9VMyw2TNBXrdSxvhzXyeoy-b68-r2-L-083d6uq-UFXJU8G7Tje6rHVPmqbrgZdCCmAdUN3nLWjOhWJLIeuuYiWt605LLep8rwXjsofyHC0Oc1XwMQbo2zGYQYZdS0m7j6DdR9DuI2j3EWTBu4NgnLoB9F983nkG3s-AjEraPkinTPyHq1hd0Yw1Bwzy77YGQhuVAadAmwAqtdqb_z3hD84zp1Y</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Replicative Response, Immunophenotype, and Functional Activity of Monocyte-Derived versus CD34+-Derived Dendritic Cells Following Exposure to Various Expansion and Maturational Stimuli</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Chen, Bohao ; Stiff, Patrick ; Sloan, George ; Kash, Joseph ; Manjunath, Rajini ; Pathasarathy, Mala ; Oldenburg, David ; Foreman, Kimberly E. ; Nickoloff, Brian J.</creator><creatorcontrib>Chen, Bohao ; Stiff, Patrick ; Sloan, George ; Kash, Joseph ; Manjunath, Rajini ; Pathasarathy, Mala ; Oldenburg, David ; Foreman, Kimberly E. ; Nickoloff, Brian J.</creatorcontrib><description>Dendritic cells (DCs), generated ex vivo from blood mononuclear cells (PBMC) or CD34+ stem cells, are being used to develop novel immunotherapies. To establish optimal DC generation, a direct comparison of the optimal cell source, culture conditions, and maturation stimuli was performed, utilizing phenotypic and functional assays as end points. Plastic adherent monocytes from PBMC were expanded in a serum-free medium (X-Vivo 10) for 7 days using GM-CSF/IL-4; CD34+ cells were expanded for 14 days using GM-CSF/IL-4/ Flt3L, in either X-Vivo 10 alone or with albumin or autologous plasma. Expanded DC from both cell sources were matured for 7 days with CD40L or IFN-α/TNF-α. Starting from 2 × 107 monocytes, the optimal expansion/maturation process yielded 1.73 ± 0.52 × 106 CD86+ DC. Optimal expansion of CD34+ cells (83.9 ± 25.0-fold) was achieved using X-Vivo 10 with 5% plasma, matured with CD40L, and yielded 10.68 ± 2.72 × 106 CD86+ DC from 1 × 106 CD34+ cells. Mature DC from PBMC or CD34+ cells had similar enhanced expression of MHC class II HLA-DR, CD80, CD83, and CD86 and were potent stimulators of mixed lymphocyte reactions. Prior to maturation, all groups of DC actively phagocytosed apoptotic melanoma cells (approximately 50% of HLA-DR+). CD34+ DC matured with CD40L or IFN-α/TNF-α had reduced phagocytic capability (34 and 31% of HLA-DR+ DC, respectively). Similar expansion and functional activity was found using cryopreserved DC precursors, cultured in gas permeable bags. We conclude that both cell lineages produce potent mature DC, permitting exploration of the optimal clinical strategy to trigger anti-tumor immune responses in patients with malignancies.</description><identifier>ISSN: 1521-6616</identifier><identifier>EISSN: 1521-7035</identifier><identifier>DOI: 10.1006/clim.2000.4968</identifier><identifier>PMID: 11161986</identifier><identifier>CODEN: CLIIFY</identifier><language>eng</language><publisher>San Diego, CA: Elsevier Inc</publisher><subject>Antigens, CD - biosynthesis ; Antigens, CD - genetics ; Antigens, CD34 - analysis ; Antineoplastic agents ; B7-1 Antigen - biosynthesis ; B7-1 Antigen - genetics ; B7-2 Antigen ; Biological and medical sciences ; CD34 ; CD40 Ligand - pharmacology ; CD40L ; CD83 Antigen ; Cell Differentiation - drug effects ; Cell Division - drug effects ; Cell Lineage ; Cells, Cultured ; dendritic cells ; Dendritic Cells - chemistry ; Dendritic Cells - cytology ; Dendritic Cells - drug effects ; Dendritic Cells - physiology ; Filgrastim ; Gene Expression Regulation - drug effects ; Gene Expression Regulation, Neoplastic - drug effects ; Genes, MHC Class II ; Granulocyte Colony-Stimulating Factor - pharmacology ; Hematopoietic Stem Cell Mobilization ; Hematopoietic Stem Cells - cytology ; Hematopoietic Stem Cells - drug effects ; HLA-DR Antigens - biosynthesis ; Humans ; Immunoglobulins - biosynthesis ; Immunoglobulins - genetics ; Immunophenotyping ; Immunotherapy ; Interferon-alpha - pharmacology ; Leukapheresis ; Lymphocyte Culture Test, Mixed ; Lymphoma, Non-Hodgkin - blood ; Medical sciences ; Membrane Glycoproteins - biosynthesis ; Membrane Glycoproteins - genetics ; Membrane Proteins - pharmacology ; monocytes ; Monocytes - cytology ; Monocytes - drug effects ; Multiple Myeloma - blood ; Phagocytosis - drug effects ; Pharmacology. Drug treatments ; Recombinant Proteins - pharmacology ; Tumor Necrosis Factor-alpha - pharmacology ; vaccines</subject><ispartof>Clinical immunology (Orlando, Fla.), 2001-02, Vol.98 (2), p.280-292</ispartof><rights>2000 Academic Press</rights><rights>2001 INIST-CNRS</rights><rights>Copyright 2000 Academic Press.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c435t-5bbd8d37df088bfe536a6e2be1df111d556c296a7b423177bdad672bed625afe3</citedby><cites>FETCH-LOGICAL-c435t-5bbd8d37df088bfe536a6e2be1df111d556c296a7b423177bdad672bed625afe3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1521661600949684$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=1142741$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11161986$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chen, Bohao</creatorcontrib><creatorcontrib>Stiff, Patrick</creatorcontrib><creatorcontrib>Sloan, George</creatorcontrib><creatorcontrib>Kash, Joseph</creatorcontrib><creatorcontrib>Manjunath, Rajini</creatorcontrib><creatorcontrib>Pathasarathy, Mala</creatorcontrib><creatorcontrib>Oldenburg, David</creatorcontrib><creatorcontrib>Foreman, Kimberly E.</creatorcontrib><creatorcontrib>Nickoloff, Brian J.</creatorcontrib><title>Replicative Response, Immunophenotype, and Functional Activity of Monocyte-Derived versus CD34+-Derived Dendritic Cells Following Exposure to Various Expansion and Maturational Stimuli</title><title>Clinical immunology (Orlando, Fla.)</title><addtitle>Clin Immunol</addtitle><description>Dendritic cells (DCs), generated ex vivo from blood mononuclear cells (PBMC) or CD34+ stem cells, are being used to develop novel immunotherapies. To establish optimal DC generation, a direct comparison of the optimal cell source, culture conditions, and maturation stimuli was performed, utilizing phenotypic and functional assays as end points. Plastic adherent monocytes from PBMC were expanded in a serum-free medium (X-Vivo 10) for 7 days using GM-CSF/IL-4; CD34+ cells were expanded for 14 days using GM-CSF/IL-4/ Flt3L, in either X-Vivo 10 alone or with albumin or autologous plasma. Expanded DC from both cell sources were matured for 7 days with CD40L or IFN-α/TNF-α. Starting from 2 × 107 monocytes, the optimal expansion/maturation process yielded 1.73 ± 0.52 × 106 CD86+ DC. Optimal expansion of CD34+ cells (83.9 ± 25.0-fold) was achieved using X-Vivo 10 with 5% plasma, matured with CD40L, and yielded 10.68 ± 2.72 × 106 CD86+ DC from 1 × 106 CD34+ cells. Mature DC from PBMC or CD34+ cells had similar enhanced expression of MHC class II HLA-DR, CD80, CD83, and CD86 and were potent stimulators of mixed lymphocyte reactions. Prior to maturation, all groups of DC actively phagocytosed apoptotic melanoma cells (approximately 50% of HLA-DR+). CD34+ DC matured with CD40L or IFN-α/TNF-α had reduced phagocytic capability (34 and 31% of HLA-DR+ DC, respectively). Similar expansion and functional activity was found using cryopreserved DC precursors, cultured in gas permeable bags. We conclude that both cell lineages produce potent mature DC, permitting exploration of the optimal clinical strategy to trigger anti-tumor immune responses in patients with malignancies.</description><subject>Antigens, CD - biosynthesis</subject><subject>Antigens, CD - genetics</subject><subject>Antigens, CD34 - analysis</subject><subject>Antineoplastic agents</subject><subject>B7-1 Antigen - biosynthesis</subject><subject>B7-1 Antigen - genetics</subject><subject>B7-2 Antigen</subject><subject>Biological and medical sciences</subject><subject>CD34</subject><subject>CD40 Ligand - pharmacology</subject><subject>CD40L</subject><subject>CD83 Antigen</subject><subject>Cell Differentiation - drug effects</subject><subject>Cell Division - drug effects</subject><subject>Cell Lineage</subject><subject>Cells, Cultured</subject><subject>dendritic cells</subject><subject>Dendritic Cells - chemistry</subject><subject>Dendritic Cells - cytology</subject><subject>Dendritic Cells - drug effects</subject><subject>Dendritic Cells - physiology</subject><subject>Filgrastim</subject><subject>Gene Expression Regulation - drug effects</subject><subject>Gene Expression Regulation, Neoplastic - drug effects</subject><subject>Genes, MHC Class II</subject><subject>Granulocyte Colony-Stimulating Factor - pharmacology</subject><subject>Hematopoietic Stem Cell Mobilization</subject><subject>Hematopoietic Stem Cells - cytology</subject><subject>Hematopoietic Stem Cells - drug effects</subject><subject>HLA-DR Antigens - biosynthesis</subject><subject>Humans</subject><subject>Immunoglobulins - biosynthesis</subject><subject>Immunoglobulins - genetics</subject><subject>Immunophenotyping</subject><subject>Immunotherapy</subject><subject>Interferon-alpha - pharmacology</subject><subject>Leukapheresis</subject><subject>Lymphocyte Culture Test, Mixed</subject><subject>Lymphoma, Non-Hodgkin - blood</subject><subject>Medical sciences</subject><subject>Membrane Glycoproteins - biosynthesis</subject><subject>Membrane Glycoproteins - genetics</subject><subject>Membrane Proteins - pharmacology</subject><subject>monocytes</subject><subject>Monocytes - cytology</subject><subject>Monocytes - drug effects</subject><subject>Multiple Myeloma - blood</subject><subject>Phagocytosis - drug effects</subject><subject>Pharmacology. Drug treatments</subject><subject>Recombinant Proteins - pharmacology</subject><subject>Tumor Necrosis Factor-alpha - pharmacology</subject><subject>vaccines</subject><issn>1521-6616</issn><issn>1521-7035</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kU9v3CAQxVHUKn977bHi0FvjLWCDvcdoN5tESlQpaXu1MIxbKgwW4G33m_Xjlc1aaS89MRp-bx7MQ-gtJQtKiPiorBkWjBCyqJaiOUKnlDNa1KTkr-ZaCCpO0FmMPzLFGRPH6IRSKuiyEafo9yOM1iiZzBbwI8TRuwiX-G4YJufH7-B82o25IZ3Gm8mpZLyTFl_lYmvSDvseP3jn1S5BsYaQp2i8hRCniFfrsvrw0lyD08Eko_AKrI144631P437hq9_jT5OAXDy-KsMxmdt7kkXs9ez8YNMU5Cz9VMyw2TNBXrdSxvhzXyeoy-b68-r2-L-083d6uq-UFXJU8G7Tje6rHVPmqbrgZdCCmAdUN3nLWjOhWJLIeuuYiWt605LLep8rwXjsofyHC0Oc1XwMQbo2zGYQYZdS0m7j6DdR9DuI2j3EWTBu4NgnLoB9F983nkG3s-AjEraPkinTPyHq1hd0Yw1Bwzy77YGQhuVAadAmwAqtdqb_z3hD84zp1Y</recordid><startdate>20010201</startdate><enddate>20010201</enddate><creator>Chen, Bohao</creator><creator>Stiff, Patrick</creator><creator>Sloan, George</creator><creator>Kash, Joseph</creator><creator>Manjunath, Rajini</creator><creator>Pathasarathy, Mala</creator><creator>Oldenburg, David</creator><creator>Foreman, Kimberly E.</creator><creator>Nickoloff, Brian J.</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20010201</creationdate><title>Replicative Response, Immunophenotype, and Functional Activity of Monocyte-Derived versus CD34+-Derived Dendritic Cells Following Exposure to Various Expansion and Maturational Stimuli</title><author>Chen, Bohao ; Stiff, Patrick ; Sloan, George ; Kash, Joseph ; Manjunath, Rajini ; Pathasarathy, Mala ; Oldenburg, David ; Foreman, Kimberly E. ; Nickoloff, Brian J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c435t-5bbd8d37df088bfe536a6e2be1df111d556c296a7b423177bdad672bed625afe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Antigens, CD - biosynthesis</topic><topic>Antigens, CD - genetics</topic><topic>Antigens, CD34 - analysis</topic><topic>Antineoplastic agents</topic><topic>B7-1 Antigen - biosynthesis</topic><topic>B7-1 Antigen - genetics</topic><topic>B7-2 Antigen</topic><topic>Biological and medical sciences</topic><topic>CD34</topic><topic>CD40 Ligand - pharmacology</topic><topic>CD40L</topic><topic>CD83 Antigen</topic><topic>Cell Differentiation - drug effects</topic><topic>Cell Division - drug effects</topic><topic>Cell Lineage</topic><topic>Cells, Cultured</topic><topic>dendritic cells</topic><topic>Dendritic Cells - chemistry</topic><topic>Dendritic Cells - cytology</topic><topic>Dendritic Cells - drug effects</topic><topic>Dendritic Cells - physiology</topic><topic>Filgrastim</topic><topic>Gene Expression Regulation - drug effects</topic><topic>Gene Expression Regulation, Neoplastic - drug effects</topic><topic>Genes, MHC Class II</topic><topic>Granulocyte Colony-Stimulating Factor - pharmacology</topic><topic>Hematopoietic Stem Cell Mobilization</topic><topic>Hematopoietic Stem Cells - cytology</topic><topic>Hematopoietic Stem Cells - drug effects</topic><topic>HLA-DR Antigens - biosynthesis</topic><topic>Humans</topic><topic>Immunoglobulins - biosynthesis</topic><topic>Immunoglobulins - genetics</topic><topic>Immunophenotyping</topic><topic>Immunotherapy</topic><topic>Interferon-alpha - pharmacology</topic><topic>Leukapheresis</topic><topic>Lymphocyte Culture Test, Mixed</topic><topic>Lymphoma, Non-Hodgkin - blood</topic><topic>Medical sciences</topic><topic>Membrane Glycoproteins - biosynthesis</topic><topic>Membrane Glycoproteins - genetics</topic><topic>Membrane Proteins - pharmacology</topic><topic>monocytes</topic><topic>Monocytes - cytology</topic><topic>Monocytes - drug effects</topic><topic>Multiple Myeloma - blood</topic><topic>Phagocytosis - drug effects</topic><topic>Pharmacology. Drug treatments</topic><topic>Recombinant Proteins - pharmacology</topic><topic>Tumor Necrosis Factor-alpha - pharmacology</topic><topic>vaccines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Bohao</creatorcontrib><creatorcontrib>Stiff, Patrick</creatorcontrib><creatorcontrib>Sloan, George</creatorcontrib><creatorcontrib>Kash, Joseph</creatorcontrib><creatorcontrib>Manjunath, Rajini</creatorcontrib><creatorcontrib>Pathasarathy, Mala</creatorcontrib><creatorcontrib>Oldenburg, David</creatorcontrib><creatorcontrib>Foreman, Kimberly E.</creatorcontrib><creatorcontrib>Nickoloff, Brian J.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><jtitle>Clinical immunology (Orlando, Fla.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Bohao</au><au>Stiff, Patrick</au><au>Sloan, George</au><au>Kash, Joseph</au><au>Manjunath, Rajini</au><au>Pathasarathy, Mala</au><au>Oldenburg, David</au><au>Foreman, Kimberly E.</au><au>Nickoloff, Brian J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Replicative Response, Immunophenotype, and Functional Activity of Monocyte-Derived versus CD34+-Derived Dendritic Cells Following Exposure to Various Expansion and Maturational Stimuli</atitle><jtitle>Clinical immunology (Orlando, Fla.)</jtitle><addtitle>Clin Immunol</addtitle><date>2001-02-01</date><risdate>2001</risdate><volume>98</volume><issue>2</issue><spage>280</spage><epage>292</epage><pages>280-292</pages><issn>1521-6616</issn><eissn>1521-7035</eissn><coden>CLIIFY</coden><abstract>Dendritic cells (DCs), generated ex vivo from blood mononuclear cells (PBMC) or CD34+ stem cells, are being used to develop novel immunotherapies. To establish optimal DC generation, a direct comparison of the optimal cell source, culture conditions, and maturation stimuli was performed, utilizing phenotypic and functional assays as end points. Plastic adherent monocytes from PBMC were expanded in a serum-free medium (X-Vivo 10) for 7 days using GM-CSF/IL-4; CD34+ cells were expanded for 14 days using GM-CSF/IL-4/ Flt3L, in either X-Vivo 10 alone or with albumin or autologous plasma. Expanded DC from both cell sources were matured for 7 days with CD40L or IFN-α/TNF-α. Starting from 2 × 107 monocytes, the optimal expansion/maturation process yielded 1.73 ± 0.52 × 106 CD86+ DC. Optimal expansion of CD34+ cells (83.9 ± 25.0-fold) was achieved using X-Vivo 10 with 5% plasma, matured with CD40L, and yielded 10.68 ± 2.72 × 106 CD86+ DC from 1 × 106 CD34+ cells. Mature DC from PBMC or CD34+ cells had similar enhanced expression of MHC class II HLA-DR, CD80, CD83, and CD86 and were potent stimulators of mixed lymphocyte reactions. Prior to maturation, all groups of DC actively phagocytosed apoptotic melanoma cells (approximately 50% of HLA-DR+). CD34+ DC matured with CD40L or IFN-α/TNF-α had reduced phagocytic capability (34 and 31% of HLA-DR+ DC, respectively). Similar expansion and functional activity was found using cryopreserved DC precursors, cultured in gas permeable bags. We conclude that both cell lineages produce potent mature DC, permitting exploration of the optimal clinical strategy to trigger anti-tumor immune responses in patients with malignancies.</abstract><cop>San Diego, CA</cop><pub>Elsevier Inc</pub><pmid>11161986</pmid><doi>10.1006/clim.2000.4968</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1521-6616
ispartof Clinical immunology (Orlando, Fla.), 2001-02, Vol.98 (2), p.280-292
issn 1521-6616
1521-7035
language eng
recordid cdi_crossref_primary_10_1006_clim_2000_4968
source MEDLINE; Elsevier ScienceDirect Journals
subjects Antigens, CD - biosynthesis
Antigens, CD - genetics
Antigens, CD34 - analysis
Antineoplastic agents
B7-1 Antigen - biosynthesis
B7-1 Antigen - genetics
B7-2 Antigen
Biological and medical sciences
CD34
CD40 Ligand - pharmacology
CD40L
CD83 Antigen
Cell Differentiation - drug effects
Cell Division - drug effects
Cell Lineage
Cells, Cultured
dendritic cells
Dendritic Cells - chemistry
Dendritic Cells - cytology
Dendritic Cells - drug effects
Dendritic Cells - physiology
Filgrastim
Gene Expression Regulation - drug effects
Gene Expression Regulation, Neoplastic - drug effects
Genes, MHC Class II
Granulocyte Colony-Stimulating Factor - pharmacology
Hematopoietic Stem Cell Mobilization
Hematopoietic Stem Cells - cytology
Hematopoietic Stem Cells - drug effects
HLA-DR Antigens - biosynthesis
Humans
Immunoglobulins - biosynthesis
Immunoglobulins - genetics
Immunophenotyping
Immunotherapy
Interferon-alpha - pharmacology
Leukapheresis
Lymphocyte Culture Test, Mixed
Lymphoma, Non-Hodgkin - blood
Medical sciences
Membrane Glycoproteins - biosynthesis
Membrane Glycoproteins - genetics
Membrane Proteins - pharmacology
monocytes
Monocytes - cytology
Monocytes - drug effects
Multiple Myeloma - blood
Phagocytosis - drug effects
Pharmacology. Drug treatments
Recombinant Proteins - pharmacology
Tumor Necrosis Factor-alpha - pharmacology
vaccines
title Replicative Response, Immunophenotype, and Functional Activity of Monocyte-Derived versus CD34+-Derived Dendritic Cells Following Exposure to Various Expansion and Maturational Stimuli
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T00%3A57%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Replicative%20Response,%20Immunophenotype,%20and%20Functional%20Activity%20of%20Monocyte-Derived%20versus%20CD34+-Derived%20Dendritic%20Cells%20Following%20Exposure%20to%20Various%20Expansion%20and%20Maturational%20Stimuli&rft.jtitle=Clinical%20immunology%20(Orlando,%20Fla.)&rft.au=Chen,%20Bohao&rft.date=2001-02-01&rft.volume=98&rft.issue=2&rft.spage=280&rft.epage=292&rft.pages=280-292&rft.issn=1521-6616&rft.eissn=1521-7035&rft.coden=CLIIFY&rft_id=info:doi/10.1006/clim.2000.4968&rft_dat=%3Celsevier_cross%3ES1521661600949684%3C/elsevier_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/11161986&rft_els_id=S1521661600949684&rfr_iscdi=true