The Nonlinear Prefiltering and Difference of Estimates Approaches to Edge Detection: Applications of Stack Filters

The theory of stack filtering, which is a generalization of median filtering, is used in two different approaches to the detection of intensity edges in noisy images. The first approach is a generalization of median prefiltering: a stack filter or another median-type filter is used to smooth an imag...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:CVGIP. Graphical models and image processing 1993-03, Vol.55 (2), p.140-159
Hauptverfasser: Yoo, J., Bouman, C.A., Delp, E.J., Coyle, E.J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 159
container_issue 2
container_start_page 140
container_title CVGIP. Graphical models and image processing
container_volume 55
creator Yoo, J.
Bouman, C.A.
Delp, E.J.
Coyle, E.J.
description The theory of stack filtering, which is a generalization of median filtering, is used in two different approaches to the detection of intensity edges in noisy images. The first approach is a generalization of median prefiltering: a stack filter or another median-type filter is used to smooth an image before a standard gradient estimator is applied. These prefiltering schemes retain the robustness of the median prefilter, but allow resolution of finer detail. The second approach, called the Difference of Estimates (DoE) approach, is a new formulation of a morphological scheme [Lee et al., IEEE Trans. Robotics Automat. RA-3, Apr. 1987, 142-156, Maragos and Ziff, IEEE Trans. Pattern Anal. Mach. Intell. 12(5), May 1990.] which has proven to be very sensitive to impulsive noise. In this approach, stack filters are applied to a noisy image to obtain local estimates of the dilated and eroded versions of the noise-free image. Thresholding the difference between these two estimates yields the edge map. We find, for example, that this approach yields results comparable to those obtained with the Canny operator for images with additive Gaussian noise, but works much better when the noise is impulsive. In both approaches, the stack filters employed are trained to be optimal on images and noise that are "typical" examples of the target image. The robustness of stack filters leads to good performance for the target image, even when the statistics of the noise and/or image vary from those used in training. This is verified with extensive simulations.
doi_str_mv 10.1006/cgip.1993.1010
format Article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1006_cgip_1993_1010</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1049965283710102</els_id><sourcerecordid>S1049965283710102</sourcerecordid><originalsourceid>FETCH-LOGICAL-c315t-bc90aefe0bcd653eba7460fe5c99e16dd4c06bc1ee795cdbe9b9da035003484a3</originalsourceid><addsrcrecordid>eNp1kEFPwzAMhSsEEjC4cs6Ba0eyNC3hNo0NkCZAYpyj1HG2QGmrJELi35MwxI2TbdnPfv6K4oLRKaO0voKtG6dMSp5KRg-KEyZEUzZ1xQ9TTitZylrMjovTEN4opZILcVL4zQ7J49B3rkftybNH67qI3vVbontDbp216LEHJIMlyxDdh44YyHwc_aBhl9I4kKXZIrnFiBDd0N_kbudA5yJk3UvU8E5WP5vDWXFkdRfw_DdOitfVcrO4L9dPdw-L-boEzkQsW5BUo0XagqkFx1Y3VU0tCpASWW1MBbRugSE2UoBpUbbSaMoFpby6rjSfFNP9XvBDCOkxNfrk3n8pRlUmpjIxlYmpTCwJLveCUQfQnfW6Bxf-VLypqlkzS2PX-zFM5j8dehXAZULG-QRAmcH9d-EbOPKBgw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The Nonlinear Prefiltering and Difference of Estimates Approaches to Edge Detection: Applications of Stack Filters</title><source>Alma/SFX Local Collection</source><creator>Yoo, J. ; Bouman, C.A. ; Delp, E.J. ; Coyle, E.J.</creator><creatorcontrib>Yoo, J. ; Bouman, C.A. ; Delp, E.J. ; Coyle, E.J.</creatorcontrib><description>The theory of stack filtering, which is a generalization of median filtering, is used in two different approaches to the detection of intensity edges in noisy images. The first approach is a generalization of median prefiltering: a stack filter or another median-type filter is used to smooth an image before a standard gradient estimator is applied. These prefiltering schemes retain the robustness of the median prefilter, but allow resolution of finer detail. The second approach, called the Difference of Estimates (DoE) approach, is a new formulation of a morphological scheme [Lee et al., IEEE Trans. Robotics Automat. RA-3, Apr. 1987, 142-156, Maragos and Ziff, IEEE Trans. Pattern Anal. Mach. Intell. 12(5), May 1990.] which has proven to be very sensitive to impulsive noise. In this approach, stack filters are applied to a noisy image to obtain local estimates of the dilated and eroded versions of the noise-free image. Thresholding the difference between these two estimates yields the edge map. We find, for example, that this approach yields results comparable to those obtained with the Canny operator for images with additive Gaussian noise, but works much better when the noise is impulsive. In both approaches, the stack filters employed are trained to be optimal on images and noise that are "typical" examples of the target image. The robustness of stack filters leads to good performance for the target image, even when the statistics of the noise and/or image vary from those used in training. This is verified with extensive simulations.</description><identifier>ISSN: 1049-9652</identifier><identifier>EISSN: 1557-7643</identifier><identifier>DOI: 10.1006/cgip.1993.1010</identifier><language>eng</language><publisher>Boston, MA: Elsevier Inc</publisher><subject>Applied sciences ; Artificial intelligence ; Computer science; control theory; systems ; Exact sciences and technology ; Pattern recognition. Digital image processing. Computational geometry</subject><ispartof>CVGIP. Graphical models and image processing, 1993-03, Vol.55 (2), p.140-159</ispartof><rights>1993 Academic Press</rights><rights>1994 INIST-CNRS</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c315t-bc90aefe0bcd653eba7460fe5c99e16dd4c06bc1ee795cdbe9b9da035003484a3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=3744272$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Yoo, J.</creatorcontrib><creatorcontrib>Bouman, C.A.</creatorcontrib><creatorcontrib>Delp, E.J.</creatorcontrib><creatorcontrib>Coyle, E.J.</creatorcontrib><title>The Nonlinear Prefiltering and Difference of Estimates Approaches to Edge Detection: Applications of Stack Filters</title><title>CVGIP. Graphical models and image processing</title><description>The theory of stack filtering, which is a generalization of median filtering, is used in two different approaches to the detection of intensity edges in noisy images. The first approach is a generalization of median prefiltering: a stack filter or another median-type filter is used to smooth an image before a standard gradient estimator is applied. These prefiltering schemes retain the robustness of the median prefilter, but allow resolution of finer detail. The second approach, called the Difference of Estimates (DoE) approach, is a new formulation of a morphological scheme [Lee et al., IEEE Trans. Robotics Automat. RA-3, Apr. 1987, 142-156, Maragos and Ziff, IEEE Trans. Pattern Anal. Mach. Intell. 12(5), May 1990.] which has proven to be very sensitive to impulsive noise. In this approach, stack filters are applied to a noisy image to obtain local estimates of the dilated and eroded versions of the noise-free image. Thresholding the difference between these two estimates yields the edge map. We find, for example, that this approach yields results comparable to those obtained with the Canny operator for images with additive Gaussian noise, but works much better when the noise is impulsive. In both approaches, the stack filters employed are trained to be optimal on images and noise that are "typical" examples of the target image. The robustness of stack filters leads to good performance for the target image, even when the statistics of the noise and/or image vary from those used in training. This is verified with extensive simulations.</description><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Computer science; control theory; systems</subject><subject>Exact sciences and technology</subject><subject>Pattern recognition. Digital image processing. Computational geometry</subject><issn>1049-9652</issn><issn>1557-7643</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1993</creationdate><recordtype>article</recordtype><recordid>eNp1kEFPwzAMhSsEEjC4cs6Ba0eyNC3hNo0NkCZAYpyj1HG2QGmrJELi35MwxI2TbdnPfv6K4oLRKaO0voKtG6dMSp5KRg-KEyZEUzZ1xQ9TTitZylrMjovTEN4opZILcVL4zQ7J49B3rkftybNH67qI3vVbontDbp216LEHJIMlyxDdh44YyHwc_aBhl9I4kKXZIrnFiBDd0N_kbudA5yJk3UvU8E5WP5vDWXFkdRfw_DdOitfVcrO4L9dPdw-L-boEzkQsW5BUo0XagqkFx1Y3VU0tCpASWW1MBbRugSE2UoBpUbbSaMoFpby6rjSfFNP9XvBDCOkxNfrk3n8pRlUmpjIxlYmpTCwJLveCUQfQnfW6Bxf-VLypqlkzS2PX-zFM5j8dehXAZULG-QRAmcH9d-EbOPKBgw</recordid><startdate>19930301</startdate><enddate>19930301</enddate><creator>Yoo, J.</creator><creator>Bouman, C.A.</creator><creator>Delp, E.J.</creator><creator>Coyle, E.J.</creator><general>Elsevier Inc</general><general>Academic Press</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19930301</creationdate><title>The Nonlinear Prefiltering and Difference of Estimates Approaches to Edge Detection: Applications of Stack Filters</title><author>Yoo, J. ; Bouman, C.A. ; Delp, E.J. ; Coyle, E.J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c315t-bc90aefe0bcd653eba7460fe5c99e16dd4c06bc1ee795cdbe9b9da035003484a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1993</creationdate><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Computer science; control theory; systems</topic><topic>Exact sciences and technology</topic><topic>Pattern recognition. Digital image processing. Computational geometry</topic><toplevel>online_resources</toplevel><creatorcontrib>Yoo, J.</creatorcontrib><creatorcontrib>Bouman, C.A.</creatorcontrib><creatorcontrib>Delp, E.J.</creatorcontrib><creatorcontrib>Coyle, E.J.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>CVGIP. Graphical models and image processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yoo, J.</au><au>Bouman, C.A.</au><au>Delp, E.J.</au><au>Coyle, E.J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Nonlinear Prefiltering and Difference of Estimates Approaches to Edge Detection: Applications of Stack Filters</atitle><jtitle>CVGIP. Graphical models and image processing</jtitle><date>1993-03-01</date><risdate>1993</risdate><volume>55</volume><issue>2</issue><spage>140</spage><epage>159</epage><pages>140-159</pages><issn>1049-9652</issn><eissn>1557-7643</eissn><abstract>The theory of stack filtering, which is a generalization of median filtering, is used in two different approaches to the detection of intensity edges in noisy images. The first approach is a generalization of median prefiltering: a stack filter or another median-type filter is used to smooth an image before a standard gradient estimator is applied. These prefiltering schemes retain the robustness of the median prefilter, but allow resolution of finer detail. The second approach, called the Difference of Estimates (DoE) approach, is a new formulation of a morphological scheme [Lee et al., IEEE Trans. Robotics Automat. RA-3, Apr. 1987, 142-156, Maragos and Ziff, IEEE Trans. Pattern Anal. Mach. Intell. 12(5), May 1990.] which has proven to be very sensitive to impulsive noise. In this approach, stack filters are applied to a noisy image to obtain local estimates of the dilated and eroded versions of the noise-free image. Thresholding the difference between these two estimates yields the edge map. We find, for example, that this approach yields results comparable to those obtained with the Canny operator for images with additive Gaussian noise, but works much better when the noise is impulsive. In both approaches, the stack filters employed are trained to be optimal on images and noise that are "typical" examples of the target image. The robustness of stack filters leads to good performance for the target image, even when the statistics of the noise and/or image vary from those used in training. This is verified with extensive simulations.</abstract><cop>Boston, MA</cop><cop>San Diego, CA</cop><cop>New York, NY</cop><pub>Elsevier Inc</pub><doi>10.1006/cgip.1993.1010</doi><tpages>20</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1049-9652
ispartof CVGIP. Graphical models and image processing, 1993-03, Vol.55 (2), p.140-159
issn 1049-9652
1557-7643
language eng
recordid cdi_crossref_primary_10_1006_cgip_1993_1010
source Alma/SFX Local Collection
subjects Applied sciences
Artificial intelligence
Computer science
control theory
systems
Exact sciences and technology
Pattern recognition. Digital image processing. Computational geometry
title The Nonlinear Prefiltering and Difference of Estimates Approaches to Edge Detection: Applications of Stack Filters
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T02%3A45%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Nonlinear%20Prefiltering%20and%20Difference%20of%20Estimates%20Approaches%20to%20Edge%20Detection:%20Applications%20of%20Stack%20Filters&rft.jtitle=CVGIP.%20Graphical%20models%20and%20image%20processing&rft.au=Yoo,%20J.&rft.date=1993-03-01&rft.volume=55&rft.issue=2&rft.spage=140&rft.epage=159&rft.pages=140-159&rft.issn=1049-9652&rft.eissn=1557-7643&rft_id=info:doi/10.1006/cgip.1993.1010&rft_dat=%3Celsevier_cross%3ES1049965283710102%3C/elsevier_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S1049965283710102&rfr_iscdi=true