Holes and Genus of 2D and 3D Digital Images
"Hole" has been a confusing idea in the 3D digital literature. We replace counting holes by the clear geometrical idea of counting non-separating cuts, and show that this gives the Betti number b 1, while b 0 counts components and b 2 cavities. Connected sets with equal b 1 and b 2 must ma...
Gespeichert in:
Veröffentlicht in: | CVGIP. Graphical models and image processing 1993, Vol.55 (1), p.20-47 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 47 |
---|---|
container_issue | 1 |
container_start_page | 20 |
container_title | CVGIP. Graphical models and image processing |
container_volume | 55 |
creator | Lee, C.N. Poston, T. Rosenfeld, A. |
description | "Hole" has been a confusing idea in the 3D digital literature. We replace counting holes by the clear geometrical idea of counting non-separating cuts, and show that this gives the Betti number
b
1, while
b
0 counts components and
b
2 cavities. Connected sets with equal
b
1 and
b
2 must match topologically when
b
1 = 0 (implying simple connectedness). When
b
1 ≠ 0, contrary to digital folklore, they need not. This paper is a conceptually self-contained introduction for computer scientists to these numbers of 2D and 3D images, and to other topological features such as Euler and linking numbers. |
doi_str_mv | 10.1006/cgip.1993.1002 |
format | Article |
fullrecord | <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1006_cgip_1993_1002</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1049965283710023</els_id><sourcerecordid>S1049965283710023</sourcerecordid><originalsourceid>FETCH-LOGICAL-c315t-4d5ccae6430afb64aa1c7e59cd26cb357eee4ab40ff928fb96653a8a50df70af3</originalsourceid><addsrcrecordid>eNp1j71PwzAQxS0EEqWwMmdgQyn-djyiFtpKlVhgti7OOTJKk8ouSPz3JBSxMd096f3u3SPkltEFo1Q_-DYeFsxaMUl-RmZMKVMaLcX5uFNpS6sVvyRXOb9TSq1QakbuN0OHuYC-KdbYf-RiCAVf_WixKlaxjUfoiu0eWszX5CJAl_Hmd87J2_PT63JT7l7W2-XjrvSCqWMpG-U94JhLIdRaAjBvUFnfcO1roQwiSqglDcHyKtRWayWgAkWbYEZEzMnidNenIeeEwR1S3EP6coy6qaqbqrqp6iT5CNydgANkD11I0PuY_yhhpORGjrbqZMPx-c-IyWUfsffYxIT-6Joh_pfwDTYJZag</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Holes and Genus of 2D and 3D Digital Images</title><source>Alma/SFX Local Collection</source><creator>Lee, C.N. ; Poston, T. ; Rosenfeld, A.</creator><creatorcontrib>Lee, C.N. ; Poston, T. ; Rosenfeld, A.</creatorcontrib><description>"Hole" has been a confusing idea in the 3D digital literature. We replace counting holes by the clear geometrical idea of counting non-separating cuts, and show that this gives the Betti number
b
1, while
b
0 counts components and
b
2 cavities. Connected sets with equal
b
1 and
b
2 must match topologically when
b
1 = 0 (implying simple connectedness). When
b
1 ≠ 0, contrary to digital folklore, they need not. This paper is a conceptually self-contained introduction for computer scientists to these numbers of 2D and 3D images, and to other topological features such as Euler and linking numbers.</description><identifier>ISSN: 1049-9652</identifier><identifier>EISSN: 1557-7643</identifier><identifier>DOI: 10.1006/cgip.1993.1002</identifier><language>eng</language><publisher>Boston, MA: Elsevier Inc</publisher><subject>Applied sciences ; Artificial intelligence ; Computer science; control theory; systems ; Exact sciences and technology ; Pattern recognition. Digital image processing. Computational geometry</subject><ispartof>CVGIP. Graphical models and image processing, 1993, Vol.55 (1), p.20-47</ispartof><rights>1993 Academic Press</rights><rights>1994 INIST-CNRS</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c315t-4d5ccae6430afb64aa1c7e59cd26cb357eee4ab40ff928fb96653a8a50df70af3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,4010,27900,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=3744274$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Lee, C.N.</creatorcontrib><creatorcontrib>Poston, T.</creatorcontrib><creatorcontrib>Rosenfeld, A.</creatorcontrib><title>Holes and Genus of 2D and 3D Digital Images</title><title>CVGIP. Graphical models and image processing</title><description>"Hole" has been a confusing idea in the 3D digital literature. We replace counting holes by the clear geometrical idea of counting non-separating cuts, and show that this gives the Betti number
b
1, while
b
0 counts components and
b
2 cavities. Connected sets with equal
b
1 and
b
2 must match topologically when
b
1 = 0 (implying simple connectedness). When
b
1 ≠ 0, contrary to digital folklore, they need not. This paper is a conceptually self-contained introduction for computer scientists to these numbers of 2D and 3D images, and to other topological features such as Euler and linking numbers.</description><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Computer science; control theory; systems</subject><subject>Exact sciences and technology</subject><subject>Pattern recognition. Digital image processing. Computational geometry</subject><issn>1049-9652</issn><issn>1557-7643</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1993</creationdate><recordtype>article</recordtype><recordid>eNp1j71PwzAQxS0EEqWwMmdgQyn-djyiFtpKlVhgti7OOTJKk8ouSPz3JBSxMd096f3u3SPkltEFo1Q_-DYeFsxaMUl-RmZMKVMaLcX5uFNpS6sVvyRXOb9TSq1QakbuN0OHuYC-KdbYf-RiCAVf_WixKlaxjUfoiu0eWszX5CJAl_Hmd87J2_PT63JT7l7W2-XjrvSCqWMpG-U94JhLIdRaAjBvUFnfcO1roQwiSqglDcHyKtRWayWgAkWbYEZEzMnidNenIeeEwR1S3EP6coy6qaqbqrqp6iT5CNydgANkD11I0PuY_yhhpORGjrbqZMPx-c-IyWUfsffYxIT-6Joh_pfwDTYJZag</recordid><startdate>1993</startdate><enddate>1993</enddate><creator>Lee, C.N.</creator><creator>Poston, T.</creator><creator>Rosenfeld, A.</creator><general>Elsevier Inc</general><general>Academic Press</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>1993</creationdate><title>Holes and Genus of 2D and 3D Digital Images</title><author>Lee, C.N. ; Poston, T. ; Rosenfeld, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c315t-4d5ccae6430afb64aa1c7e59cd26cb357eee4ab40ff928fb96653a8a50df70af3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1993</creationdate><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Computer science; control theory; systems</topic><topic>Exact sciences and technology</topic><topic>Pattern recognition. Digital image processing. Computational geometry</topic><toplevel>online_resources</toplevel><creatorcontrib>Lee, C.N.</creatorcontrib><creatorcontrib>Poston, T.</creatorcontrib><creatorcontrib>Rosenfeld, A.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>CVGIP. Graphical models and image processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, C.N.</au><au>Poston, T.</au><au>Rosenfeld, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Holes and Genus of 2D and 3D Digital Images</atitle><jtitle>CVGIP. Graphical models and image processing</jtitle><date>1993</date><risdate>1993</risdate><volume>55</volume><issue>1</issue><spage>20</spage><epage>47</epage><pages>20-47</pages><issn>1049-9652</issn><eissn>1557-7643</eissn><abstract>"Hole" has been a confusing idea in the 3D digital literature. We replace counting holes by the clear geometrical idea of counting non-separating cuts, and show that this gives the Betti number
b
1, while
b
0 counts components and
b
2 cavities. Connected sets with equal
b
1 and
b
2 must match topologically when
b
1 = 0 (implying simple connectedness). When
b
1 ≠ 0, contrary to digital folklore, they need not. This paper is a conceptually self-contained introduction for computer scientists to these numbers of 2D and 3D images, and to other topological features such as Euler and linking numbers.</abstract><cop>Boston, MA</cop><cop>San Diego, CA</cop><cop>New York, NY</cop><pub>Elsevier Inc</pub><doi>10.1006/cgip.1993.1002</doi><tpages>28</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1049-9652 |
ispartof | CVGIP. Graphical models and image processing, 1993, Vol.55 (1), p.20-47 |
issn | 1049-9652 1557-7643 |
language | eng |
recordid | cdi_crossref_primary_10_1006_cgip_1993_1002 |
source | Alma/SFX Local Collection |
subjects | Applied sciences Artificial intelligence Computer science control theory systems Exact sciences and technology Pattern recognition. Digital image processing. Computational geometry |
title | Holes and Genus of 2D and 3D Digital Images |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T21%3A29%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Holes%20and%20Genus%20of%202D%20and%203D%20Digital%20Images&rft.jtitle=CVGIP.%20Graphical%20models%20and%20image%20processing&rft.au=Lee,%20C.N.&rft.date=1993&rft.volume=55&rft.issue=1&rft.spage=20&rft.epage=47&rft.pages=20-47&rft.issn=1049-9652&rft.eissn=1557-7643&rft_id=info:doi/10.1006/cgip.1993.1002&rft_dat=%3Celsevier_cross%3ES1049965283710023%3C/elsevier_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S1049965283710023&rfr_iscdi=true |