Discrete Coherent States and Probability Distributions in Finite-Dimensional Spaces
Operator bases are discussed in connection with the construction of phase space representatives of operators in finite-dimensional spaces, and their properties are presented. It is also shown how these operator bases allow for the construction of a finite harmonic oscillator-like coherent state. Cre...
Gespeichert in:
Veröffentlicht in: | Annals of Physics (New York) 1996-08, Vol.249 (2), p.454-480 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 480 |
---|---|
container_issue | 2 |
container_start_page | 454 |
container_title | Annals of Physics (New York) |
container_volume | 249 |
creator | Galetti, D. Marchiolli, M.A |
description | Operator bases are discussed in connection with the construction of phase space representatives of operators in finite-dimensional spaces, and their properties are presented. It is also shown how these operator bases allow for the construction of a finite harmonic oscillator-like coherent state. Creation and annihilation operators for the Fock finite-dimensional space are discussed and their expressions in terms of the operator bases are explicitly written. The relevant finite-dimensional probability distributions are obtained and their limiting behavior for an infinite-dimensional space are calculated which agree with the well known results |
doi_str_mv | 10.1006/aphy.1996.0079 |
format | Article |
fullrecord | <record><control><sourceid>elsevier_osti_</sourceid><recordid>TN_cdi_crossref_primary_10_1006_aphy_1996_0079</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0003491696900792</els_id><sourcerecordid>S0003491696900792</sourcerecordid><originalsourceid>FETCH-LOGICAL-c352t-32ec52170202faac125ec90064865906c0d0f35afe9b7bcf624918e12a446a7f3</originalsourceid><addsrcrecordid>eNp1kEFLAzEUhIMoWKtXz_EH7PqS3WQ3R2mtCgWFKngL2exbGmmzJYlC_71Z6tXTg2FmmPcRcsugZADy3hy2x5IpJUuARp2RGQMlC6jE5zmZAUBV1IrJS3IV4xcAY7VoZ2SzdNEGTEgX4xYD-kQ3ySSM1PievoWxM53buXSk2ZiC676TG32kztOV8y5hsXR79DGLZkc3B2MxXpOLwewi3vzdOflYPb4vnov169PL4mFd2ErwVFQcreCsAQ58MMYyLtCq_EndSqFAWuhhqIQZUHVNZwfJ8_4WGTd1LU0zVHNyd-odY3I62rzGbu3oPdqkq1ZILrKnPHlsGGMMOOhDcHsTjpqBnrDpCZuesOkJWw60pwDm5T8Ow1SM3mLvwtTbj-6_6C-DLHRz</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Discrete Coherent States and Probability Distributions in Finite-Dimensional Spaces</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Galetti, D. ; Marchiolli, M.A</creator><creatorcontrib>Galetti, D. ; Marchiolli, M.A</creatorcontrib><description>Operator bases are discussed in connection with the construction of phase space representatives of operators in finite-dimensional spaces, and their properties are presented. It is also shown how these operator bases allow for the construction of a finite harmonic oscillator-like coherent state. Creation and annihilation operators for the Fock finite-dimensional space are discussed and their expressions in terms of the operator bases are explicitly written. The relevant finite-dimensional probability distributions are obtained and their limiting behavior for an infinite-dimensional space are calculated which agree with the well known results</description><identifier>ISSN: 0003-4916</identifier><identifier>EISSN: 1096-035X</identifier><identifier>DOI: 10.1006/aphy.1996.0079</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>COHERENT STATES ; DISPERSION RELATIONS ; DISTRIBUTION FUNCTIONS ; FOCK REPRESENTATION ; HARMONIC OSCILLATORS ; HILBERT SPACE ; MANY-DIMENSIONAL CALCULATIONS ; MATHEMATICAL OPERATORS ; PHASE SPACE ; PHYSICS ; QUANTUM FIELD THEORY ; QUANTUM MECHANICS</subject><ispartof>Annals of Physics (New York), 1996-08, Vol.249 (2), p.454-480</ispartof><rights>1996 Academic Press</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c352t-32ec52170202faac125ec90064865906c0d0f35afe9b7bcf624918e12a446a7f3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1006/aphy.1996.0079$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/385625$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Galetti, D.</creatorcontrib><creatorcontrib>Marchiolli, M.A</creatorcontrib><title>Discrete Coherent States and Probability Distributions in Finite-Dimensional Spaces</title><title>Annals of Physics (New York)</title><description>Operator bases are discussed in connection with the construction of phase space representatives of operators in finite-dimensional spaces, and their properties are presented. It is also shown how these operator bases allow for the construction of a finite harmonic oscillator-like coherent state. Creation and annihilation operators for the Fock finite-dimensional space are discussed and their expressions in terms of the operator bases are explicitly written. The relevant finite-dimensional probability distributions are obtained and their limiting behavior for an infinite-dimensional space are calculated which agree with the well known results</description><subject>COHERENT STATES</subject><subject>DISPERSION RELATIONS</subject><subject>DISTRIBUTION FUNCTIONS</subject><subject>FOCK REPRESENTATION</subject><subject>HARMONIC OSCILLATORS</subject><subject>HILBERT SPACE</subject><subject>MANY-DIMENSIONAL CALCULATIONS</subject><subject>MATHEMATICAL OPERATORS</subject><subject>PHASE SPACE</subject><subject>PHYSICS</subject><subject>QUANTUM FIELD THEORY</subject><subject>QUANTUM MECHANICS</subject><issn>0003-4916</issn><issn>1096-035X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1996</creationdate><recordtype>article</recordtype><recordid>eNp1kEFLAzEUhIMoWKtXz_EH7PqS3WQ3R2mtCgWFKngL2exbGmmzJYlC_71Z6tXTg2FmmPcRcsugZADy3hy2x5IpJUuARp2RGQMlC6jE5zmZAUBV1IrJS3IV4xcAY7VoZ2SzdNEGTEgX4xYD-kQ3ySSM1PievoWxM53buXSk2ZiC676TG32kztOV8y5hsXR79DGLZkc3B2MxXpOLwewi3vzdOflYPb4vnov169PL4mFd2ErwVFQcreCsAQ58MMYyLtCq_EndSqFAWuhhqIQZUHVNZwfJ8_4WGTd1LU0zVHNyd-odY3I62rzGbu3oPdqkq1ZILrKnPHlsGGMMOOhDcHsTjpqBnrDpCZuesOkJWw60pwDm5T8Ow1SM3mLvwtTbj-6_6C-DLHRz</recordid><startdate>19960801</startdate><enddate>19960801</enddate><creator>Galetti, D.</creator><creator>Marchiolli, M.A</creator><general>Elsevier Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>19960801</creationdate><title>Discrete Coherent States and Probability Distributions in Finite-Dimensional Spaces</title><author>Galetti, D. ; Marchiolli, M.A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c352t-32ec52170202faac125ec90064865906c0d0f35afe9b7bcf624918e12a446a7f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1996</creationdate><topic>COHERENT STATES</topic><topic>DISPERSION RELATIONS</topic><topic>DISTRIBUTION FUNCTIONS</topic><topic>FOCK REPRESENTATION</topic><topic>HARMONIC OSCILLATORS</topic><topic>HILBERT SPACE</topic><topic>MANY-DIMENSIONAL CALCULATIONS</topic><topic>MATHEMATICAL OPERATORS</topic><topic>PHASE SPACE</topic><topic>PHYSICS</topic><topic>QUANTUM FIELD THEORY</topic><topic>QUANTUM MECHANICS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Galetti, D.</creatorcontrib><creatorcontrib>Marchiolli, M.A</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Annals of Physics (New York)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Galetti, D.</au><au>Marchiolli, M.A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Discrete Coherent States and Probability Distributions in Finite-Dimensional Spaces</atitle><jtitle>Annals of Physics (New York)</jtitle><date>1996-08-01</date><risdate>1996</risdate><volume>249</volume><issue>2</issue><spage>454</spage><epage>480</epage><pages>454-480</pages><issn>0003-4916</issn><eissn>1096-035X</eissn><abstract>Operator bases are discussed in connection with the construction of phase space representatives of operators in finite-dimensional spaces, and their properties are presented. It is also shown how these operator bases allow for the construction of a finite harmonic oscillator-like coherent state. Creation and annihilation operators for the Fock finite-dimensional space are discussed and their expressions in terms of the operator bases are explicitly written. The relevant finite-dimensional probability distributions are obtained and their limiting behavior for an infinite-dimensional space are calculated which agree with the well known results</abstract><cop>United States</cop><pub>Elsevier Inc</pub><doi>10.1006/aphy.1996.0079</doi><tpages>27</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-4916 |
ispartof | Annals of Physics (New York), 1996-08, Vol.249 (2), p.454-480 |
issn | 0003-4916 1096-035X |
language | eng |
recordid | cdi_crossref_primary_10_1006_aphy_1996_0079 |
source | Elsevier ScienceDirect Journals Complete |
subjects | COHERENT STATES DISPERSION RELATIONS DISTRIBUTION FUNCTIONS FOCK REPRESENTATION HARMONIC OSCILLATORS HILBERT SPACE MANY-DIMENSIONAL CALCULATIONS MATHEMATICAL OPERATORS PHASE SPACE PHYSICS QUANTUM FIELD THEORY QUANTUM MECHANICS |
title | Discrete Coherent States and Probability Distributions in Finite-Dimensional Spaces |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T14%3A39%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Discrete%20Coherent%20States%20and%20Probability%20Distributions%20in%20Finite-Dimensional%20Spaces&rft.jtitle=Annals%20of%20Physics%20(New%20York)&rft.au=Galetti,%20D.&rft.date=1996-08-01&rft.volume=249&rft.issue=2&rft.spage=454&rft.epage=480&rft.pages=454-480&rft.issn=0003-4916&rft.eissn=1096-035X&rft_id=info:doi/10.1006/aphy.1996.0079&rft_dat=%3Celsevier_osti_%3ES0003491696900792%3C/elsevier_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0003491696900792&rfr_iscdi=true |