On Unbounded p-Summable Fredholm Modules
We prove that odd unbounded p-summable Fredholm modules are also bounded p-summable Fredholm modules (this is the odd counterpart of a result of A. Connes for the case of even Fredholm modules). The approach we use is via estimates of the form ‖φ(D)−φ(D0)‖Lp(M,τ)⩽C·‖D−D0‖1/2, where φ(t)=t(1+t2)−1/2,...
Gespeichert in:
Veröffentlicht in: | Advances in mathematics (New York. 1965) 2000-05, Vol.151 (2), p.140-163 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 163 |
---|---|
container_issue | 2 |
container_start_page | 140 |
container_title | Advances in mathematics (New York. 1965) |
container_volume | 151 |
creator | Carey, A.L. Phillips, J. Sukochev, F.A. |
description | We prove that odd unbounded p-summable Fredholm modules are also bounded p-summable Fredholm modules (this is the odd counterpart of a result of A. Connes for the case of even Fredholm modules). The approach we use is via estimates of the form ‖φ(D)−φ(D0)‖Lp(M,τ)⩽C·‖D−D0‖1/2, where φ(t)=t(1+t2)−1/2, D0=D*0 is an unbounded linear operator affiliated with a semifinite von Neumann algebra M, D−D0 is a bounded self-adjoint linear operator from M and (1+D20)−1/2∈Lp(M,τ), where Lp(M,τ) is a non-commutative Lp-space associated with M. It follows from our results that if p∈(1,∞), then φ(D)−φ(D0) belongs to the space Lp(M,τ). |
doi_str_mv | 10.1006/aima.1999.1876 |
format | Article |
fullrecord | <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1006_aima_1999_1876</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0001870899918765</els_id><sourcerecordid>S0001870899918765</sourcerecordid><originalsourceid>FETCH-LOGICAL-c326t-8dd17cd0bcd8475f24655d4f8e0c0fea81088cf9386c29da759a4467191484993</originalsourceid><addsrcrecordid>eNp1zz1PwzAQgGELgUQorMwZWRLOiWOfR1RRilTUATpbjn0RQfmo7AaJf0-isjKdbnhP9zB2zyHnAPLRtr3NudY656jkBUs4aMgKwOKSJQDAM1SA1-wmxq951YLrhD3sh_Qw1OM0ePLpMXuf-t7WHaWbQP5z7Pr0bfRTR_GWXTW2i3T3N1fssHn-WG-z3f7ldf20y1xZyFOG3nPlPNTOo1BVUwhZVV40SOCgIYscEF2jS5Su0N6qSlshpOKaCxRalyuWn--6MMYYqDHHMMPCj-FgFqdZnGZxmsU5B3gOaP7qu6VgomtpcOTbQO5k_Nj-l_4CAHpYAw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>On Unbounded p-Summable Fredholm Modules</title><source>Access via ScienceDirect (Elsevier)</source><source>EZB Electronic Journals Library</source><creator>Carey, A.L. ; Phillips, J. ; Sukochev, F.A.</creator><creatorcontrib>Carey, A.L. ; Phillips, J. ; Sukochev, F.A.</creatorcontrib><description>We prove that odd unbounded p-summable Fredholm modules are also bounded p-summable Fredholm modules (this is the odd counterpart of a result of A. Connes for the case of even Fredholm modules). The approach we use is via estimates of the form ‖φ(D)−φ(D0)‖Lp(M,τ)⩽C·‖D−D0‖1/2, where φ(t)=t(1+t2)−1/2, D0=D*0 is an unbounded linear operator affiliated with a semifinite von Neumann algebra M, D−D0 is a bounded self-adjoint linear operator from M and (1+D20)−1/2∈Lp(M,τ), where Lp(M,τ) is a non-commutative Lp-space associated with M. It follows from our results that if p∈(1,∞), then φ(D)−φ(D0) belongs to the space Lp(M,τ).</description><identifier>ISSN: 0001-8708</identifier><identifier>EISSN: 1090-2082</identifier><identifier>DOI: 10.1006/aima.1999.1876</identifier><language>eng</language><publisher>Elsevier Inc</publisher><ispartof>Advances in mathematics (New York. 1965), 2000-05, Vol.151 (2), p.140-163</ispartof><rights>2000 Academic Press</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c326t-8dd17cd0bcd8475f24655d4f8e0c0fea81088cf9386c29da759a4467191484993</citedby><cites>FETCH-LOGICAL-c326t-8dd17cd0bcd8475f24655d4f8e0c0fea81088cf9386c29da759a4467191484993</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1006/aima.1999.1876$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Carey, A.L.</creatorcontrib><creatorcontrib>Phillips, J.</creatorcontrib><creatorcontrib>Sukochev, F.A.</creatorcontrib><title>On Unbounded p-Summable Fredholm Modules</title><title>Advances in mathematics (New York. 1965)</title><description>We prove that odd unbounded p-summable Fredholm modules are also bounded p-summable Fredholm modules (this is the odd counterpart of a result of A. Connes for the case of even Fredholm modules). The approach we use is via estimates of the form ‖φ(D)−φ(D0)‖Lp(M,τ)⩽C·‖D−D0‖1/2, where φ(t)=t(1+t2)−1/2, D0=D*0 is an unbounded linear operator affiliated with a semifinite von Neumann algebra M, D−D0 is a bounded self-adjoint linear operator from M and (1+D20)−1/2∈Lp(M,τ), where Lp(M,τ) is a non-commutative Lp-space associated with M. It follows from our results that if p∈(1,∞), then φ(D)−φ(D0) belongs to the space Lp(M,τ).</description><issn>0001-8708</issn><issn>1090-2082</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><recordid>eNp1zz1PwzAQgGELgUQorMwZWRLOiWOfR1RRilTUATpbjn0RQfmo7AaJf0-isjKdbnhP9zB2zyHnAPLRtr3NudY656jkBUs4aMgKwOKSJQDAM1SA1-wmxq951YLrhD3sh_Qw1OM0ePLpMXuf-t7WHaWbQP5z7Pr0bfRTR_GWXTW2i3T3N1fssHn-WG-z3f7ldf20y1xZyFOG3nPlPNTOo1BVUwhZVV40SOCgIYscEF2jS5Su0N6qSlshpOKaCxRalyuWn--6MMYYqDHHMMPCj-FgFqdZnGZxmsU5B3gOaP7qu6VgomtpcOTbQO5k_Nj-l_4CAHpYAw</recordid><startdate>20000510</startdate><enddate>20000510</enddate><creator>Carey, A.L.</creator><creator>Phillips, J.</creator><creator>Sukochev, F.A.</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20000510</creationdate><title>On Unbounded p-Summable Fredholm Modules</title><author>Carey, A.L. ; Phillips, J. ; Sukochev, F.A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c326t-8dd17cd0bcd8475f24655d4f8e0c0fea81088cf9386c29da759a4467191484993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Carey, A.L.</creatorcontrib><creatorcontrib>Phillips, J.</creatorcontrib><creatorcontrib>Sukochev, F.A.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><jtitle>Advances in mathematics (New York. 1965)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Carey, A.L.</au><au>Phillips, J.</au><au>Sukochev, F.A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On Unbounded p-Summable Fredholm Modules</atitle><jtitle>Advances in mathematics (New York. 1965)</jtitle><date>2000-05-10</date><risdate>2000</risdate><volume>151</volume><issue>2</issue><spage>140</spage><epage>163</epage><pages>140-163</pages><issn>0001-8708</issn><eissn>1090-2082</eissn><abstract>We prove that odd unbounded p-summable Fredholm modules are also bounded p-summable Fredholm modules (this is the odd counterpart of a result of A. Connes for the case of even Fredholm modules). The approach we use is via estimates of the form ‖φ(D)−φ(D0)‖Lp(M,τ)⩽C·‖D−D0‖1/2, where φ(t)=t(1+t2)−1/2, D0=D*0 is an unbounded linear operator affiliated with a semifinite von Neumann algebra M, D−D0 is a bounded self-adjoint linear operator from M and (1+D20)−1/2∈Lp(M,τ), where Lp(M,τ) is a non-commutative Lp-space associated with M. It follows from our results that if p∈(1,∞), then φ(D)−φ(D0) belongs to the space Lp(M,τ).</abstract><pub>Elsevier Inc</pub><doi>10.1006/aima.1999.1876</doi><tpages>24</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0001-8708 |
ispartof | Advances in mathematics (New York. 1965), 2000-05, Vol.151 (2), p.140-163 |
issn | 0001-8708 1090-2082 |
language | eng |
recordid | cdi_crossref_primary_10_1006_aima_1999_1876 |
source | Access via ScienceDirect (Elsevier); EZB Electronic Journals Library |
title | On Unbounded p-Summable Fredholm Modules |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T17%3A45%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20Unbounded%20p-Summable%20Fredholm%20Modules&rft.jtitle=Advances%20in%20mathematics%20(New%20York.%201965)&rft.au=Carey,%20A.L.&rft.date=2000-05-10&rft.volume=151&rft.issue=2&rft.spage=140&rft.epage=163&rft.pages=140-163&rft.issn=0001-8708&rft.eissn=1090-2082&rft_id=info:doi/10.1006/aima.1999.1876&rft_dat=%3Celsevier_cross%3ES0001870899918765%3C/elsevier_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0001870899918765&rfr_iscdi=true |