The 2-Blocks of the Covering Groups of the Symmetric Groups
LetŜnbe a double cover of the finite symmetric groupSnof degreen, i.e.,Ŝnhas a central involutionzsuch thatŜn/⦠z⦔≃Sn. An irreducible character ofŜnis calledordinaryorspinaccording to whether it haszin its kernel or not. The purpose of this paper is to determine the distribution of the spin character...
Gespeichert in:
Veröffentlicht in: | Advances in mathematics (New York. 1965) 1997-08, Vol.129 (2), p.261-300 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 300 |
---|---|
container_issue | 2 |
container_start_page | 261 |
container_title | Advances in mathematics (New York. 1965) |
container_volume | 129 |
creator | Bessenrodt, Christine Olsson, Jørn B. |
description | LetŜnbe a double cover of the finite symmetric groupSnof degreen, i.e.,Ŝnhas a central involutionzsuch thatŜn/⦠z⦔≃Sn. An irreducible character ofŜnis calledordinaryorspinaccording to whether it haszin its kernel or not.
The purpose of this paper is to determine the distribution of the spin characters ofŜninto 2-blocks. The methods applied here are essentially different from those applied to previous questions of this type. We also discuss some consequences of our main result for the decomposition numbers. An analogue of James' well-known result for the decomposition numbers of the symmetric groups is proved, providing also a generalization of a theorem of Benson [Ben, Theorem 1.2]. In Section 1 we present the background for our results and give some preliminaries. In Section 2 we give an explicit formula for the number of spin characters in a 2-block. We also prove a result about the weight of a block containing a given non-self-associate spin character which will be important for the proof of our theorem on the 2-block distribution of spin characters. Section 3 presents some fundamental combinatorial concepts used in Sections 4 and 5. The theorem concerning the spin characters in a given 2-block is proved in Section 4, and in Section 5 we present our results on the decomposition numbers. |
doi_str_mv | 10.1006/aima.1997.1654 |
format | Article |
fullrecord | <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1006_aima_1997_1654</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0001870897916546</els_id><sourcerecordid>S0001870897916546</sourcerecordid><originalsourceid>FETCH-LOGICAL-c392t-f82fa5dfe0ee183b7d163ac6a83f1166dddc675638552af31a977f9f8ab402e83</originalsourceid><addsrcrecordid>eNp1j0FLAzEQhYMoWKtXz_sHdp1JutkET1q0FQoerOeQJhONtt2SrIX-e3dp8eZpeA--x3yM3SJUCCDvbNzYCrVuKpT15IyNEDSUHBQ_ZyMAwFI1oC7ZVc5ffdQT1CN2v_ykgpeP69Z956INRdfnabunFLcfxSy1P7u_-u2w2VCXojv11-wi2HWmm9Mds_fnp-V0Xi5eZy_Th0XphOZdGRQPtvaBgAiVWDUepbBOWiUCopTeeyebWgpV19wGgVY3TdBB2dUEOCkxZtVx16U250TB7FLvmg4GwQzqZlA3g7oZ1HtAHQHqv9pHSia7SFtHPiZynfFt_A_9Bd5cX0A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The 2-Blocks of the Covering Groups of the Symmetric Groups</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Access via ScienceDirect (Elsevier)</source><creator>Bessenrodt, Christine ; Olsson, Jørn B.</creator><creatorcontrib>Bessenrodt, Christine ; Olsson, Jørn B.</creatorcontrib><description>LetŜnbe a double cover of the finite symmetric groupSnof degreen, i.e.,Ŝnhas a central involutionzsuch thatŜn/⦠z⦔≃Sn. An irreducible character ofŜnis calledordinaryorspinaccording to whether it haszin its kernel or not.
The purpose of this paper is to determine the distribution of the spin characters ofŜninto 2-blocks. The methods applied here are essentially different from those applied to previous questions of this type. We also discuss some consequences of our main result for the decomposition numbers. An analogue of James' well-known result for the decomposition numbers of the symmetric groups is proved, providing also a generalization of a theorem of Benson [Ben, Theorem 1.2]. In Section 1 we present the background for our results and give some preliminaries. In Section 2 we give an explicit formula for the number of spin characters in a 2-block. We also prove a result about the weight of a block containing a given non-self-associate spin character which will be important for the proof of our theorem on the 2-block distribution of spin characters. Section 3 presents some fundamental combinatorial concepts used in Sections 4 and 5. The theorem concerning the spin characters in a given 2-block is proved in Section 4, and in Section 5 we present our results on the decomposition numbers.</description><identifier>ISSN: 0001-8708</identifier><identifier>EISSN: 1090-2082</identifier><identifier>DOI: 10.1006/aima.1997.1654</identifier><language>eng</language><publisher>Elsevier Inc</publisher><ispartof>Advances in mathematics (New York. 1965), 1997-08, Vol.129 (2), p.261-300</ispartof><rights>1997 Academic Press</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c392t-f82fa5dfe0ee183b7d163ac6a83f1166dddc675638552af31a977f9f8ab402e83</citedby><cites>FETCH-LOGICAL-c392t-f82fa5dfe0ee183b7d163ac6a83f1166dddc675638552af31a977f9f8ab402e83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1006/aima.1997.1654$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Bessenrodt, Christine</creatorcontrib><creatorcontrib>Olsson, Jørn B.</creatorcontrib><title>The 2-Blocks of the Covering Groups of the Symmetric Groups</title><title>Advances in mathematics (New York. 1965)</title><description>LetŜnbe a double cover of the finite symmetric groupSnof degreen, i.e.,Ŝnhas a central involutionzsuch thatŜn/⦠z⦔≃Sn. An irreducible character ofŜnis calledordinaryorspinaccording to whether it haszin its kernel or not.
The purpose of this paper is to determine the distribution of the spin characters ofŜninto 2-blocks. The methods applied here are essentially different from those applied to previous questions of this type. We also discuss some consequences of our main result for the decomposition numbers. An analogue of James' well-known result for the decomposition numbers of the symmetric groups is proved, providing also a generalization of a theorem of Benson [Ben, Theorem 1.2]. In Section 1 we present the background for our results and give some preliminaries. In Section 2 we give an explicit formula for the number of spin characters in a 2-block. We also prove a result about the weight of a block containing a given non-self-associate spin character which will be important for the proof of our theorem on the 2-block distribution of spin characters. Section 3 presents some fundamental combinatorial concepts used in Sections 4 and 5. The theorem concerning the spin characters in a given 2-block is proved in Section 4, and in Section 5 we present our results on the decomposition numbers.</description><issn>0001-8708</issn><issn>1090-2082</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1997</creationdate><recordtype>article</recordtype><recordid>eNp1j0FLAzEQhYMoWKtXz_sHdp1JutkET1q0FQoerOeQJhONtt2SrIX-e3dp8eZpeA--x3yM3SJUCCDvbNzYCrVuKpT15IyNEDSUHBQ_ZyMAwFI1oC7ZVc5ffdQT1CN2v_ykgpeP69Z956INRdfnabunFLcfxSy1P7u_-u2w2VCXojv11-wi2HWmm9Mds_fnp-V0Xi5eZy_Th0XphOZdGRQPtvaBgAiVWDUepbBOWiUCopTeeyebWgpV19wGgVY3TdBB2dUEOCkxZtVx16U250TB7FLvmg4GwQzqZlA3g7oZ1HtAHQHqv9pHSia7SFtHPiZynfFt_A_9Bd5cX0A</recordid><startdate>19970810</startdate><enddate>19970810</enddate><creator>Bessenrodt, Christine</creator><creator>Olsson, Jørn B.</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19970810</creationdate><title>The 2-Blocks of the Covering Groups of the Symmetric Groups</title><author>Bessenrodt, Christine ; Olsson, Jørn B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c392t-f82fa5dfe0ee183b7d163ac6a83f1166dddc675638552af31a977f9f8ab402e83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1997</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bessenrodt, Christine</creatorcontrib><creatorcontrib>Olsson, Jørn B.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><jtitle>Advances in mathematics (New York. 1965)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bessenrodt, Christine</au><au>Olsson, Jørn B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The 2-Blocks of the Covering Groups of the Symmetric Groups</atitle><jtitle>Advances in mathematics (New York. 1965)</jtitle><date>1997-08-10</date><risdate>1997</risdate><volume>129</volume><issue>2</issue><spage>261</spage><epage>300</epage><pages>261-300</pages><issn>0001-8708</issn><eissn>1090-2082</eissn><abstract>LetŜnbe a double cover of the finite symmetric groupSnof degreen, i.e.,Ŝnhas a central involutionzsuch thatŜn/⦠z⦔≃Sn. An irreducible character ofŜnis calledordinaryorspinaccording to whether it haszin its kernel or not.
The purpose of this paper is to determine the distribution of the spin characters ofŜninto 2-blocks. The methods applied here are essentially different from those applied to previous questions of this type. We also discuss some consequences of our main result for the decomposition numbers. An analogue of James' well-known result for the decomposition numbers of the symmetric groups is proved, providing also a generalization of a theorem of Benson [Ben, Theorem 1.2]. In Section 1 we present the background for our results and give some preliminaries. In Section 2 we give an explicit formula for the number of spin characters in a 2-block. We also prove a result about the weight of a block containing a given non-self-associate spin character which will be important for the proof of our theorem on the 2-block distribution of spin characters. Section 3 presents some fundamental combinatorial concepts used in Sections 4 and 5. The theorem concerning the spin characters in a given 2-block is proved in Section 4, and in Section 5 we present our results on the decomposition numbers.</abstract><pub>Elsevier Inc</pub><doi>10.1006/aima.1997.1654</doi><tpages>40</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0001-8708 |
ispartof | Advances in mathematics (New York. 1965), 1997-08, Vol.129 (2), p.261-300 |
issn | 0001-8708 1090-2082 |
language | eng |
recordid | cdi_crossref_primary_10_1006_aima_1997_1654 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Access via ScienceDirect (Elsevier) |
title | The 2-Blocks of the Covering Groups of the Symmetric Groups |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T02%3A19%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%202-Blocks%20of%20the%20Covering%20Groups%20of%20the%20Symmetric%20Groups&rft.jtitle=Advances%20in%20mathematics%20(New%20York.%201965)&rft.au=Bessenrodt,%20Christine&rft.date=1997-08-10&rft.volume=129&rft.issue=2&rft.spage=261&rft.epage=300&rft.pages=261-300&rft.issn=0001-8708&rft.eissn=1090-2082&rft_id=info:doi/10.1006/aima.1997.1654&rft_dat=%3Celsevier_cross%3ES0001870897916546%3C/elsevier_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0001870897916546&rfr_iscdi=true |