Adapted Bases of Time-Frequency Local Cosines

We develop and analyze a best basis algorithm for orthonormal bases of local cosines which satisfy a uniform bound on their time-frequency concentration. All waveforms are obtained from three elementary window functions by shifts, rescaling, and modulation. For a discrete signal of length N, the com...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied and computational harmonic analysis 2001-03, Vol.10 (2), p.139-162
1. Verfasser: Villemoes, Lars F
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 162
container_issue 2
container_start_page 139
container_title Applied and computational harmonic analysis
container_volume 10
creator Villemoes, Lars F
description We develop and analyze a best basis algorithm for orthonormal bases of local cosines which satisfy a uniform bound on their time-frequency concentration. All waveforms are obtained from three elementary window functions by shifts, rescaling, and modulation. For a discrete signal of length N, the complexity is of order N(log N) 2.
doi_str_mv 10.1006/acha.2000.0335
format Article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1006_acha_2000_0335</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S106352030090335X</els_id><sourcerecordid>S106352030090335X</sourcerecordid><originalsourceid>FETCH-LOGICAL-c326t-42a64ed7f19b2db70c4ce97a6b898be2ab9b50d498153cfc565165e1f06298f93</originalsourceid><addsrcrecordid>eNp1j7FOwzAURS0EEqWwMucHHJ7t2InHElGKFImlSGyWYz8Lo7YpdkDq35OorEz3LufqHkLuGZQMQD1Y92FLDgAlCCEvyIKBVlSBeL-cuxJUchDX5CbnTwDGKqkXhK68PY7oi0ebMRdDKLZxj3Sd8OsbD-5UdIOzu6IdcjxgviVXwe4y3v3lkrytn7bthnavzy_tqqNOcDXSiltVoa8D0z33fQ2ucqhrq_pGNz1y2-tegq90w6RwwUklmZLIAiium6DFkpTnXZeGnBMGc0xxb9PJMDCzrJllzSxrZtkJaM4ATq9-IiaTXZz-o48J3Wj8EP9DfwHlvlmh</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Adapted Bases of Time-Frequency Local Cosines</title><source>Access via ScienceDirect (Elsevier)</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Villemoes, Lars F</creator><creatorcontrib>Villemoes, Lars F</creatorcontrib><description>We develop and analyze a best basis algorithm for orthonormal bases of local cosines which satisfy a uniform bound on their time-frequency concentration. All waveforms are obtained from three elementary window functions by shifts, rescaling, and modulation. For a discrete signal of length N, the complexity is of order N(log N) 2.</description><identifier>ISSN: 1063-5203</identifier><identifier>EISSN: 1096-603X</identifier><identifier>DOI: 10.1006/acha.2000.0335</identifier><language>eng</language><publisher>Elsevier Inc</publisher><ispartof>Applied and computational harmonic analysis, 2001-03, Vol.10 (2), p.139-162</ispartof><rights>2001 Academic Press</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c326t-42a64ed7f19b2db70c4ce97a6b898be2ab9b50d498153cfc565165e1f06298f93</citedby><cites>FETCH-LOGICAL-c326t-42a64ed7f19b2db70c4ce97a6b898be2ab9b50d498153cfc565165e1f06298f93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1006/acha.2000.0335$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Villemoes, Lars F</creatorcontrib><title>Adapted Bases of Time-Frequency Local Cosines</title><title>Applied and computational harmonic analysis</title><description>We develop and analyze a best basis algorithm for orthonormal bases of local cosines which satisfy a uniform bound on their time-frequency concentration. All waveforms are obtained from three elementary window functions by shifts, rescaling, and modulation. For a discrete signal of length N, the complexity is of order N(log N) 2.</description><issn>1063-5203</issn><issn>1096-603X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><recordid>eNp1j7FOwzAURS0EEqWwMucHHJ7t2InHElGKFImlSGyWYz8Lo7YpdkDq35OorEz3LufqHkLuGZQMQD1Y92FLDgAlCCEvyIKBVlSBeL-cuxJUchDX5CbnTwDGKqkXhK68PY7oi0ebMRdDKLZxj3Sd8OsbD-5UdIOzu6IdcjxgviVXwe4y3v3lkrytn7bthnavzy_tqqNOcDXSiltVoa8D0z33fQ2ucqhrq_pGNz1y2-tegq90w6RwwUklmZLIAiium6DFkpTnXZeGnBMGc0xxb9PJMDCzrJllzSxrZtkJaM4ATq9-IiaTXZz-o48J3Wj8EP9DfwHlvlmh</recordid><startdate>20010301</startdate><enddate>20010301</enddate><creator>Villemoes, Lars F</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20010301</creationdate><title>Adapted Bases of Time-Frequency Local Cosines</title><author>Villemoes, Lars F</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c326t-42a64ed7f19b2db70c4ce97a6b898be2ab9b50d498153cfc565165e1f06298f93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Villemoes, Lars F</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><jtitle>Applied and computational harmonic analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Villemoes, Lars F</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adapted Bases of Time-Frequency Local Cosines</atitle><jtitle>Applied and computational harmonic analysis</jtitle><date>2001-03-01</date><risdate>2001</risdate><volume>10</volume><issue>2</issue><spage>139</spage><epage>162</epage><pages>139-162</pages><issn>1063-5203</issn><eissn>1096-603X</eissn><abstract>We develop and analyze a best basis algorithm for orthonormal bases of local cosines which satisfy a uniform bound on their time-frequency concentration. All waveforms are obtained from three elementary window functions by shifts, rescaling, and modulation. For a discrete signal of length N, the complexity is of order N(log N) 2.</abstract><pub>Elsevier Inc</pub><doi>10.1006/acha.2000.0335</doi><tpages>24</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1063-5203
ispartof Applied and computational harmonic analysis, 2001-03, Vol.10 (2), p.139-162
issn 1063-5203
1096-603X
language eng
recordid cdi_crossref_primary_10_1006_acha_2000_0335
source Access via ScienceDirect (Elsevier); EZB-FREE-00999 freely available EZB journals
title Adapted Bases of Time-Frequency Local Cosines
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T20%3A59%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adapted%20Bases%20of%20Time-Frequency%20Local%20Cosines&rft.jtitle=Applied%20and%20computational%20harmonic%20analysis&rft.au=Villemoes,%20Lars%20F&rft.date=2001-03-01&rft.volume=10&rft.issue=2&rft.spage=139&rft.epage=162&rft.pages=139-162&rft.issn=1063-5203&rft.eissn=1096-603X&rft_id=info:doi/10.1006/acha.2000.0335&rft_dat=%3Celsevier_cross%3ES106352030090335X%3C/elsevier_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S106352030090335X&rfr_iscdi=true