Information Cost Functions
A best orthogonal basis for a vector is selected from a library to minimize a cost function of the expansion coefficients. How it depends on the cost function and under what conditions it provides the fastest nonlinear approximation are still open questions which we partially answer in this paper. S...
Gespeichert in:
Veröffentlicht in: | Applied and computational harmonic analysis 2001-09, Vol.11 (2), p.147-166 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 166 |
---|---|
container_issue | 2 |
container_start_page | 147 |
container_title | Applied and computational harmonic analysis |
container_volume | 11 |
creator | Šikić, Hrvoje Wickerhauser, Mladen Victor |
description | A best orthogonal basis for a vector is selected from a library to minimize a cost function of the expansion coefficients. How it depends on the cost function and under what conditions it provides the fastest nonlinear approximation are still open questions which we partially answer in this paper. Squared expansion coefficients may be considered a discrete probability density function, or pdf. We apply some inequalities for pdfs to obtain three positive results and two counterexamples. We use the notion of subexponentiality, derived from the classical proof of an entropy inequality, to derive a number of curious inequalities relating different information costs of a single pdf. We then generalize slightly the classical result that one pdf majorizes another if it is cheaper with respect to a large-enough set of information cost functions. Finally, we present inequalities that bracket any information cost for a pdf between two functions of norms of the pdf, plus a counterexample showing that our result has a certain optimality. Another counterexample shows that, unfortunately, the set of norm-type pdfs is not large enough to imply majorization. We conclude that all information cost functions are weakly comparable to norms, but this is not quite enough to guarantee in general that the cheapest-norm pdf majorizes. |
doi_str_mv | 10.1006/acha.2000.0331 |
format | Article |
fullrecord | <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1006_acha_2000_0331</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1063520300903312</els_id><sourcerecordid>S1063520300903312</sourcerecordid><originalsourceid>FETCH-LOGICAL-c326t-50f3a763dd5a8c5530e0d63e52843491f1cc1998a3bf6f4e7db33cad5bc55dcb3</originalsourceid><addsrcrecordid>eNp1j8FKAzEQhoMoWKtXD576ArtOdjbp5iiL1ULBi4XeQnaSYMRuJFkF394N9eppZmC-n_9j7JZDzQHkvaE3UzcAUAMiP2MLDkpWEvBwXnaJlWgAL9lVzu8AnLdCLdjddvQxHc0U4rjqY55Wm6-RypWv2YU3H9nd_M0l228eX_vnavfytO0fdhVhI6dKgEezlmitMB0JgeDASnSi6VpsFfeciCvVGRy89K1b2wGRjBXD_GxpwCWrT7mUYs7Jef2ZwtGkH81BFzNdzHQx08VsBroT4OZW38ElnSm4kZwNydGkbQz_ob8BrlPL</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Information Cost Functions</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>ScienceDirect Journals (5 years ago - present)</source><creator>Šikić, Hrvoje ; Wickerhauser, Mladen Victor</creator><creatorcontrib>Šikić, Hrvoje ; Wickerhauser, Mladen Victor</creatorcontrib><description>A best orthogonal basis for a vector is selected from a library to minimize a cost function of the expansion coefficients. How it depends on the cost function and under what conditions it provides the fastest nonlinear approximation are still open questions which we partially answer in this paper. Squared expansion coefficients may be considered a discrete probability density function, or pdf. We apply some inequalities for pdfs to obtain three positive results and two counterexamples. We use the notion of subexponentiality, derived from the classical proof of an entropy inequality, to derive a number of curious inequalities relating different information costs of a single pdf. We then generalize slightly the classical result that one pdf majorizes another if it is cheaper with respect to a large-enough set of information cost functions. Finally, we present inequalities that bracket any information cost for a pdf between two functions of norms of the pdf, plus a counterexample showing that our result has a certain optimality. Another counterexample shows that, unfortunately, the set of norm-type pdfs is not large enough to imply majorization. We conclude that all information cost functions are weakly comparable to norms, but this is not quite enough to guarantee in general that the cheapest-norm pdf majorizes.</description><identifier>ISSN: 1063-5203</identifier><identifier>EISSN: 1096-603X</identifier><identifier>DOI: 10.1006/acha.2000.0331</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>best basis ; concave ; entropy ; majorization ; nonlinear approximation ; pdf ; rearrangement inequality ; Schur functional ; subexponential ; wavelet packet library</subject><ispartof>Applied and computational harmonic analysis, 2001-09, Vol.11 (2), p.147-166</ispartof><rights>2001 Academic Press</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c326t-50f3a763dd5a8c5530e0d63e52843491f1cc1998a3bf6f4e7db33cad5bc55dcb3</citedby><cites>FETCH-LOGICAL-c326t-50f3a763dd5a8c5530e0d63e52843491f1cc1998a3bf6f4e7db33cad5bc55dcb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1006/acha.2000.0331$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,778,782,3539,27911,27912,45982</link.rule.ids></links><search><creatorcontrib>Šikić, Hrvoje</creatorcontrib><creatorcontrib>Wickerhauser, Mladen Victor</creatorcontrib><title>Information Cost Functions</title><title>Applied and computational harmonic analysis</title><description>A best orthogonal basis for a vector is selected from a library to minimize a cost function of the expansion coefficients. How it depends on the cost function and under what conditions it provides the fastest nonlinear approximation are still open questions which we partially answer in this paper. Squared expansion coefficients may be considered a discrete probability density function, or pdf. We apply some inequalities for pdfs to obtain three positive results and two counterexamples. We use the notion of subexponentiality, derived from the classical proof of an entropy inequality, to derive a number of curious inequalities relating different information costs of a single pdf. We then generalize slightly the classical result that one pdf majorizes another if it is cheaper with respect to a large-enough set of information cost functions. Finally, we present inequalities that bracket any information cost for a pdf between two functions of norms of the pdf, plus a counterexample showing that our result has a certain optimality. Another counterexample shows that, unfortunately, the set of norm-type pdfs is not large enough to imply majorization. We conclude that all information cost functions are weakly comparable to norms, but this is not quite enough to guarantee in general that the cheapest-norm pdf majorizes.</description><subject>best basis</subject><subject>concave</subject><subject>entropy</subject><subject>majorization</subject><subject>nonlinear approximation</subject><subject>pdf</subject><subject>rearrangement inequality</subject><subject>Schur functional</subject><subject>subexponential</subject><subject>wavelet packet library</subject><issn>1063-5203</issn><issn>1096-603X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><recordid>eNp1j8FKAzEQhoMoWKtXD576ArtOdjbp5iiL1ULBi4XeQnaSYMRuJFkF394N9eppZmC-n_9j7JZDzQHkvaE3UzcAUAMiP2MLDkpWEvBwXnaJlWgAL9lVzu8AnLdCLdjddvQxHc0U4rjqY55Wm6-RypWv2YU3H9nd_M0l228eX_vnavfytO0fdhVhI6dKgEezlmitMB0JgeDASnSi6VpsFfeciCvVGRy89K1b2wGRjBXD_GxpwCWrT7mUYs7Jef2ZwtGkH81BFzNdzHQx08VsBroT4OZW38ElnSm4kZwNydGkbQz_ob8BrlPL</recordid><startdate>20010901</startdate><enddate>20010901</enddate><creator>Šikić, Hrvoje</creator><creator>Wickerhauser, Mladen Victor</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20010901</creationdate><title>Information Cost Functions</title><author>Šikić, Hrvoje ; Wickerhauser, Mladen Victor</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c326t-50f3a763dd5a8c5530e0d63e52843491f1cc1998a3bf6f4e7db33cad5bc55dcb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>best basis</topic><topic>concave</topic><topic>entropy</topic><topic>majorization</topic><topic>nonlinear approximation</topic><topic>pdf</topic><topic>rearrangement inequality</topic><topic>Schur functional</topic><topic>subexponential</topic><topic>wavelet packet library</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Šikić, Hrvoje</creatorcontrib><creatorcontrib>Wickerhauser, Mladen Victor</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><jtitle>Applied and computational harmonic analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Šikić, Hrvoje</au><au>Wickerhauser, Mladen Victor</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Information Cost Functions</atitle><jtitle>Applied and computational harmonic analysis</jtitle><date>2001-09-01</date><risdate>2001</risdate><volume>11</volume><issue>2</issue><spage>147</spage><epage>166</epage><pages>147-166</pages><issn>1063-5203</issn><eissn>1096-603X</eissn><abstract>A best orthogonal basis for a vector is selected from a library to minimize a cost function of the expansion coefficients. How it depends on the cost function and under what conditions it provides the fastest nonlinear approximation are still open questions which we partially answer in this paper. Squared expansion coefficients may be considered a discrete probability density function, or pdf. We apply some inequalities for pdfs to obtain three positive results and two counterexamples. We use the notion of subexponentiality, derived from the classical proof of an entropy inequality, to derive a number of curious inequalities relating different information costs of a single pdf. We then generalize slightly the classical result that one pdf majorizes another if it is cheaper with respect to a large-enough set of information cost functions. Finally, we present inequalities that bracket any information cost for a pdf between two functions of norms of the pdf, plus a counterexample showing that our result has a certain optimality. Another counterexample shows that, unfortunately, the set of norm-type pdfs is not large enough to imply majorization. We conclude that all information cost functions are weakly comparable to norms, but this is not quite enough to guarantee in general that the cheapest-norm pdf majorizes.</abstract><pub>Elsevier Inc</pub><doi>10.1006/acha.2000.0331</doi><tpages>20</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1063-5203 |
ispartof | Applied and computational harmonic analysis, 2001-09, Vol.11 (2), p.147-166 |
issn | 1063-5203 1096-603X |
language | eng |
recordid | cdi_crossref_primary_10_1006_acha_2000_0331 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; ScienceDirect Journals (5 years ago - present) |
subjects | best basis concave entropy majorization nonlinear approximation rearrangement inequality Schur functional subexponential wavelet packet library |
title | Information Cost Functions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T13%3A16%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Information%20Cost%20Functions&rft.jtitle=Applied%20and%20computational%20harmonic%20analysis&rft.au=%C5%A0iki%C4%87,%20Hrvoje&rft.date=2001-09-01&rft.volume=11&rft.issue=2&rft.spage=147&rft.epage=166&rft.pages=147-166&rft.issn=1063-5203&rft.eissn=1096-603X&rft_id=info:doi/10.1006/acha.2000.0331&rft_dat=%3Celsevier_cross%3ES1063520300903312%3C/elsevier_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S1063520300903312&rfr_iscdi=true |