Multifractal Structure of Convolution of the Cantor Measure

The multifractal structure of measures generated by iterated function systems (IFS) with overlaps is, to a large extend, unknown. In this paper we study the local dimension of the m-time convolution of the standard Cantor measure μ. By using some combinatoric techniques, we show that the set E of at...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advances in applied mathematics 2001-07, Vol.27 (1), p.1-16
Hauptverfasser: Hu, Tian-You, Lau, Ka-Sing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 16
container_issue 1
container_start_page 1
container_title Advances in applied mathematics
container_volume 27
creator Hu, Tian-You
Lau, Ka-Sing
description The multifractal structure of measures generated by iterated function systems (IFS) with overlaps is, to a large extend, unknown. In this paper we study the local dimension of the m-time convolution of the standard Cantor measure μ. By using some combinatoric techniques, we show that the set E of attainable local dimensions of μ contains an isolated point. This is rather surprising because when the IFS satisfies the open set condition, the set E is an interval. The result implies that the multifractal formalism fails without the open set condition.
doi_str_mv 10.1006/aama.2000.0683
format Article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1006_aama_2000_0683</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0196885800906833</els_id><sourcerecordid>S0196885800906833</sourcerecordid><originalsourceid>FETCH-LOGICAL-c356t-2c20fd62d1070b5e54a1c02466330464acf1f5793fe15f91d1c517032500f1723</originalsourceid><addsrcrecordid>eNp1j01LxDAQhoMouK5ePffisXWSNGmLJyl-wS4e1HOI0wQj3WZJUsF_b8oKnjwNA8878z6EXFKoKIC81nqnKwYAFciWH5EVhQ5KBk19TFZAO1m2rWhPyVmMn5nqmOQrcrOdx-Rs0Jj0WLykMGOagym8LXo_fflxTs5Py5o-TNHrKflQbI2OGTonJ1aP0Vz8zjV5u7977R_LzfPDU3-7KZELmUqGDOwg2UChgXdhRK0pAqul5BxqWWu01Iqm49ZQYTs6UBS0Ac4EgKUN42tSHe5i8DEGY9U-uJ0O34qCWtTVoq4WdbWo58DVIbDXEfWY7SZ08S9V5yKNhMy1B87k9l_OBBXRmQnN4ILBpAbv_nvxA9O-ayY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Multifractal Structure of Convolution of the Cantor Measure</title><source>Elsevier ScienceDirect Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Hu, Tian-You ; Lau, Ka-Sing</creator><creatorcontrib>Hu, Tian-You ; Lau, Ka-Sing</creatorcontrib><description>The multifractal structure of measures generated by iterated function systems (IFS) with overlaps is, to a large extend, unknown. In this paper we study the local dimension of the m-time convolution of the standard Cantor measure μ. By using some combinatoric techniques, we show that the set E of attainable local dimensions of μ contains an isolated point. This is rather surprising because when the IFS satisfies the open set condition, the set E is an interval. The result implies that the multifractal formalism fails without the open set condition.</description><identifier>ISSN: 0196-8858</identifier><identifier>EISSN: 1090-2074</identifier><identifier>DOI: 10.1006/aama.2000.0683</identifier><identifier>CODEN: AAPMEF</identifier><language>eng</language><publisher>San Diego, CA: Elsevier Inc</publisher><subject>Cantor measure ; convolution ; Exact sciences and technology ; local dimension ; Mathematical analysis ; Mathematical foundations ; Mathematics ; Measure and integration ; multifractal ; multiple representation ; probability ; Probability and statistics ; Probability theory and stochastic processes ; Sciences and techniques of general use</subject><ispartof>Advances in applied mathematics, 2001-07, Vol.27 (1), p.1-16</ispartof><rights>2001 Academic Press</rights><rights>2002 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c356t-2c20fd62d1070b5e54a1c02466330464acf1f5793fe15f91d1c517032500f1723</citedby><cites>FETCH-LOGICAL-c356t-2c20fd62d1070b5e54a1c02466330464acf1f5793fe15f91d1c517032500f1723</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1006/aama.2000.0683$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=14070760$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Hu, Tian-You</creatorcontrib><creatorcontrib>Lau, Ka-Sing</creatorcontrib><title>Multifractal Structure of Convolution of the Cantor Measure</title><title>Advances in applied mathematics</title><description>The multifractal structure of measures generated by iterated function systems (IFS) with overlaps is, to a large extend, unknown. In this paper we study the local dimension of the m-time convolution of the standard Cantor measure μ. By using some combinatoric techniques, we show that the set E of attainable local dimensions of μ contains an isolated point. This is rather surprising because when the IFS satisfies the open set condition, the set E is an interval. The result implies that the multifractal formalism fails without the open set condition.</description><subject>Cantor measure</subject><subject>convolution</subject><subject>Exact sciences and technology</subject><subject>local dimension</subject><subject>Mathematical analysis</subject><subject>Mathematical foundations</subject><subject>Mathematics</subject><subject>Measure and integration</subject><subject>multifractal</subject><subject>multiple representation</subject><subject>probability</subject><subject>Probability and statistics</subject><subject>Probability theory and stochastic processes</subject><subject>Sciences and techniques of general use</subject><issn>0196-8858</issn><issn>1090-2074</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><recordid>eNp1j01LxDAQhoMouK5ePffisXWSNGmLJyl-wS4e1HOI0wQj3WZJUsF_b8oKnjwNA8878z6EXFKoKIC81nqnKwYAFciWH5EVhQ5KBk19TFZAO1m2rWhPyVmMn5nqmOQrcrOdx-Rs0Jj0WLykMGOagym8LXo_fflxTs5Py5o-TNHrKflQbI2OGTonJ1aP0Vz8zjV5u7977R_LzfPDU3-7KZELmUqGDOwg2UChgXdhRK0pAqul5BxqWWu01Iqm49ZQYTs6UBS0Ac4EgKUN42tSHe5i8DEGY9U-uJ0O34qCWtTVoq4WdbWo58DVIbDXEfWY7SZ08S9V5yKNhMy1B87k9l_OBBXRmQnN4ILBpAbv_nvxA9O-ayY</recordid><startdate>20010701</startdate><enddate>20010701</enddate><creator>Hu, Tian-You</creator><creator>Lau, Ka-Sing</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20010701</creationdate><title>Multifractal Structure of Convolution of the Cantor Measure</title><author>Hu, Tian-You ; Lau, Ka-Sing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c356t-2c20fd62d1070b5e54a1c02466330464acf1f5793fe15f91d1c517032500f1723</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Cantor measure</topic><topic>convolution</topic><topic>Exact sciences and technology</topic><topic>local dimension</topic><topic>Mathematical analysis</topic><topic>Mathematical foundations</topic><topic>Mathematics</topic><topic>Measure and integration</topic><topic>multifractal</topic><topic>multiple representation</topic><topic>probability</topic><topic>Probability and statistics</topic><topic>Probability theory and stochastic processes</topic><topic>Sciences and techniques of general use</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hu, Tian-You</creatorcontrib><creatorcontrib>Lau, Ka-Sing</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Advances in applied mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hu, Tian-You</au><au>Lau, Ka-Sing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multifractal Structure of Convolution of the Cantor Measure</atitle><jtitle>Advances in applied mathematics</jtitle><date>2001-07-01</date><risdate>2001</risdate><volume>27</volume><issue>1</issue><spage>1</spage><epage>16</epage><pages>1-16</pages><issn>0196-8858</issn><eissn>1090-2074</eissn><coden>AAPMEF</coden><abstract>The multifractal structure of measures generated by iterated function systems (IFS) with overlaps is, to a large extend, unknown. In this paper we study the local dimension of the m-time convolution of the standard Cantor measure μ. By using some combinatoric techniques, we show that the set E of attainable local dimensions of μ contains an isolated point. This is rather surprising because when the IFS satisfies the open set condition, the set E is an interval. The result implies that the multifractal formalism fails without the open set condition.</abstract><cop>San Diego, CA</cop><pub>Elsevier Inc</pub><doi>10.1006/aama.2000.0683</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0196-8858
ispartof Advances in applied mathematics, 2001-07, Vol.27 (1), p.1-16
issn 0196-8858
1090-2074
language eng
recordid cdi_crossref_primary_10_1006_aama_2000_0683
source Elsevier ScienceDirect Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Cantor measure
convolution
Exact sciences and technology
local dimension
Mathematical analysis
Mathematical foundations
Mathematics
Measure and integration
multifractal
multiple representation
probability
Probability and statistics
Probability theory and stochastic processes
Sciences and techniques of general use
title Multifractal Structure of Convolution of the Cantor Measure
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T22%3A15%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multifractal%20Structure%20of%20Convolution%20of%20the%20Cantor%20Measure&rft.jtitle=Advances%20in%20applied%20mathematics&rft.au=Hu,%20Tian-You&rft.date=2001-07-01&rft.volume=27&rft.issue=1&rft.spage=1&rft.epage=16&rft.pages=1-16&rft.issn=0196-8858&rft.eissn=1090-2074&rft.coden=AAPMEF&rft_id=info:doi/10.1006/aama.2000.0683&rft_dat=%3Celsevier_cross%3ES0196885800906833%3C/elsevier_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0196885800906833&rfr_iscdi=true