On the Construction of Complete Sets of Geometric Invariants for Algebraic Curves

We provide a solution to the important problem of constructing complete independent sets of Euclidean and affine invariants for algebraic curves. We first simplify algebraic curves through polynomial decompositions and then use some classical geometric results to construct functionally independent s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advances in applied mathematics 2000-01, Vol.24 (1), p.65-87
Hauptverfasser: Unel, Mustafa, Wolovich, William A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 87
container_issue 1
container_start_page 65
container_title Advances in applied mathematics
container_volume 24
creator Unel, Mustafa
Wolovich, William A.
description We provide a solution to the important problem of constructing complete independent sets of Euclidean and affine invariants for algebraic curves. We first simplify algebraic curves through polynomial decompositions and then use some classical geometric results to construct functionally independent sets of invariants. The results presented here represent some new contributions to algebraic curve theory that can be used in many application areas, such model-based vision, object recognition, graphics, geometric modeling, and CAD.
doi_str_mv 10.1006/aama.1999.0679
format Article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1006_aama_1999_0679</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0196885899906796</els_id><sourcerecordid>S0196885899906796</sourcerecordid><originalsourceid>FETCH-LOGICAL-c355t-779123cb26032a5437eefd8c2b67298cd7c92d0869107f626feadf7045609ec33</originalsourceid><addsrcrecordid>eNp1kM1LxDAQxYMouK5ePffgtXWStklzXIofCwuLqOeQTScaaZslyS7439uygidPw8y8N2_4EXJLoaAA_F7rQRdUSlkAF_KMLChIyBmI6pwsgEqeN03dXJKrGL8AQDJeLsjLdszSJ2atH2MKB5OcHzNvp37Y95gwe8UU58ET-gFTcCZbj0cdnB6nufUhW_UfuAt6WrSHcMR4TS6s7iPe_NYleX98eGuf8832ad2uNrkp6zrlQkjKSrNjHEqm66oUiLZrDNtxwWRjOmEk66DhkoKwnHGLurMCqpqDRFOWS1Kc7prgYwxo1T64QYdvRUHNQNQMRM1A1AxkMtydDHsdje5t0KNx8c81pdYVTLLmJMPp-aPDoKJxOBrsXECTVOfdfwk_wDlzuw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>On the Construction of Complete Sets of Geometric Invariants for Algebraic Curves</title><source>Elsevier ScienceDirect Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Unel, Mustafa ; Wolovich, William A.</creator><creatorcontrib>Unel, Mustafa ; Wolovich, William A.</creatorcontrib><description>We provide a solution to the important problem of constructing complete independent sets of Euclidean and affine invariants for algebraic curves. We first simplify algebraic curves through polynomial decompositions and then use some classical geometric results to construct functionally independent sets of invariants. The results presented here represent some new contributions to algebraic curve theory that can be used in many application areas, such model-based vision, object recognition, graphics, geometric modeling, and CAD.</description><identifier>ISSN: 0196-8858</identifier><identifier>EISSN: 1090-2074</identifier><identifier>DOI: 10.1006/aama.1999.0679</identifier><identifier>CODEN: AAPMEF</identifier><language>eng</language><publisher>San Diego, CA: Elsevier Inc</publisher><subject>Algebra ; Algebraic geometry ; Applied sciences ; Artificial intelligence ; Computer science; control theory; systems ; Exact sciences and technology ; Mathematics ; Pattern recognition. Digital image processing. Computational geometry ; Sciences and techniques of general use</subject><ispartof>Advances in applied mathematics, 2000-01, Vol.24 (1), p.65-87</ispartof><rights>2000 Academic Press</rights><rights>2000 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c355t-779123cb26032a5437eefd8c2b67298cd7c92d0869107f626feadf7045609ec33</citedby><cites>FETCH-LOGICAL-c355t-779123cb26032a5437eefd8c2b67298cd7c92d0869107f626feadf7045609ec33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0196885899906796$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,3537,4010,27900,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=1298540$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Unel, Mustafa</creatorcontrib><creatorcontrib>Wolovich, William A.</creatorcontrib><title>On the Construction of Complete Sets of Geometric Invariants for Algebraic Curves</title><title>Advances in applied mathematics</title><description>We provide a solution to the important problem of constructing complete independent sets of Euclidean and affine invariants for algebraic curves. We first simplify algebraic curves through polynomial decompositions and then use some classical geometric results to construct functionally independent sets of invariants. The results presented here represent some new contributions to algebraic curve theory that can be used in many application areas, such model-based vision, object recognition, graphics, geometric modeling, and CAD.</description><subject>Algebra</subject><subject>Algebraic geometry</subject><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Computer science; control theory; systems</subject><subject>Exact sciences and technology</subject><subject>Mathematics</subject><subject>Pattern recognition. Digital image processing. Computational geometry</subject><subject>Sciences and techniques of general use</subject><issn>0196-8858</issn><issn>1090-2074</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><recordid>eNp1kM1LxDAQxYMouK5ePffgtXWStklzXIofCwuLqOeQTScaaZslyS7439uygidPw8y8N2_4EXJLoaAA_F7rQRdUSlkAF_KMLChIyBmI6pwsgEqeN03dXJKrGL8AQDJeLsjLdszSJ2atH2MKB5OcHzNvp37Y95gwe8UU58ET-gFTcCZbj0cdnB6nufUhW_UfuAt6WrSHcMR4TS6s7iPe_NYleX98eGuf8832ad2uNrkp6zrlQkjKSrNjHEqm66oUiLZrDNtxwWRjOmEk66DhkoKwnHGLurMCqpqDRFOWS1Kc7prgYwxo1T64QYdvRUHNQNQMRM1A1AxkMtydDHsdje5t0KNx8c81pdYVTLLmJMPp-aPDoKJxOBrsXECTVOfdfwk_wDlzuw</recordid><startdate>200001</startdate><enddate>200001</enddate><creator>Unel, Mustafa</creator><creator>Wolovich, William A.</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>200001</creationdate><title>On the Construction of Complete Sets of Geometric Invariants for Algebraic Curves</title><author>Unel, Mustafa ; Wolovich, William A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c355t-779123cb26032a5437eefd8c2b67298cd7c92d0869107f626feadf7045609ec33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Algebra</topic><topic>Algebraic geometry</topic><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Computer science; control theory; systems</topic><topic>Exact sciences and technology</topic><topic>Mathematics</topic><topic>Pattern recognition. Digital image processing. Computational geometry</topic><topic>Sciences and techniques of general use</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Unel, Mustafa</creatorcontrib><creatorcontrib>Wolovich, William A.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Advances in applied mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Unel, Mustafa</au><au>Wolovich, William A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the Construction of Complete Sets of Geometric Invariants for Algebraic Curves</atitle><jtitle>Advances in applied mathematics</jtitle><date>2000-01</date><risdate>2000</risdate><volume>24</volume><issue>1</issue><spage>65</spage><epage>87</epage><pages>65-87</pages><issn>0196-8858</issn><eissn>1090-2074</eissn><coden>AAPMEF</coden><abstract>We provide a solution to the important problem of constructing complete independent sets of Euclidean and affine invariants for algebraic curves. We first simplify algebraic curves through polynomial decompositions and then use some classical geometric results to construct functionally independent sets of invariants. The results presented here represent some new contributions to algebraic curve theory that can be used in many application areas, such model-based vision, object recognition, graphics, geometric modeling, and CAD.</abstract><cop>San Diego, CA</cop><pub>Elsevier Inc</pub><doi>10.1006/aama.1999.0679</doi><tpages>23</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0196-8858
ispartof Advances in applied mathematics, 2000-01, Vol.24 (1), p.65-87
issn 0196-8858
1090-2074
language eng
recordid cdi_crossref_primary_10_1006_aama_1999_0679
source Elsevier ScienceDirect Journals; EZB-FREE-00999 freely available EZB journals
subjects Algebra
Algebraic geometry
Applied sciences
Artificial intelligence
Computer science
control theory
systems
Exact sciences and technology
Mathematics
Pattern recognition. Digital image processing. Computational geometry
Sciences and techniques of general use
title On the Construction of Complete Sets of Geometric Invariants for Algebraic Curves
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T12%3A00%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20Construction%20of%20Complete%20Sets%20of%20Geometric%20Invariants%20for%20Algebraic%20Curves&rft.jtitle=Advances%20in%20applied%20mathematics&rft.au=Unel,%20Mustafa&rft.date=2000-01&rft.volume=24&rft.issue=1&rft.spage=65&rft.epage=87&rft.pages=65-87&rft.issn=0196-8858&rft.eissn=1090-2074&rft.coden=AAPMEF&rft_id=info:doi/10.1006/aama.1999.0679&rft_dat=%3Celsevier_cross%3ES0196885899906796%3C/elsevier_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0196885899906796&rfr_iscdi=true