On the Construction of Complete Sets of Geometric Invariants for Algebraic Curves
We provide a solution to the important problem of constructing complete independent sets of Euclidean and affine invariants for algebraic curves. We first simplify algebraic curves through polynomial decompositions and then use some classical geometric results to construct functionally independent s...
Gespeichert in:
Veröffentlicht in: | Advances in applied mathematics 2000-01, Vol.24 (1), p.65-87 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 87 |
---|---|
container_issue | 1 |
container_start_page | 65 |
container_title | Advances in applied mathematics |
container_volume | 24 |
creator | Unel, Mustafa Wolovich, William A. |
description | We provide a solution to the important problem of constructing complete independent sets of Euclidean and affine invariants for algebraic curves. We first simplify algebraic curves through polynomial decompositions and then use some classical geometric results to construct functionally independent sets of invariants. The results presented here represent some new contributions to algebraic curve theory that can be used in many application areas, such model-based vision, object recognition, graphics, geometric modeling, and CAD. |
doi_str_mv | 10.1006/aama.1999.0679 |
format | Article |
fullrecord | <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1006_aama_1999_0679</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0196885899906796</els_id><sourcerecordid>S0196885899906796</sourcerecordid><originalsourceid>FETCH-LOGICAL-c355t-779123cb26032a5437eefd8c2b67298cd7c92d0869107f626feadf7045609ec33</originalsourceid><addsrcrecordid>eNp1kM1LxDAQxYMouK5ePffgtXWStklzXIofCwuLqOeQTScaaZslyS7439uygidPw8y8N2_4EXJLoaAA_F7rQRdUSlkAF_KMLChIyBmI6pwsgEqeN03dXJKrGL8AQDJeLsjLdszSJ2atH2MKB5OcHzNvp37Y95gwe8UU58ET-gFTcCZbj0cdnB6nufUhW_UfuAt6WrSHcMR4TS6s7iPe_NYleX98eGuf8832ad2uNrkp6zrlQkjKSrNjHEqm66oUiLZrDNtxwWRjOmEk66DhkoKwnHGLurMCqpqDRFOWS1Kc7prgYwxo1T64QYdvRUHNQNQMRM1A1AxkMtydDHsdje5t0KNx8c81pdYVTLLmJMPp-aPDoKJxOBrsXECTVOfdfwk_wDlzuw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>On the Construction of Complete Sets of Geometric Invariants for Algebraic Curves</title><source>Elsevier ScienceDirect Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Unel, Mustafa ; Wolovich, William A.</creator><creatorcontrib>Unel, Mustafa ; Wolovich, William A.</creatorcontrib><description>We provide a solution to the important problem of constructing complete independent sets of Euclidean and affine invariants for algebraic curves. We first simplify algebraic curves through polynomial decompositions and then use some classical geometric results to construct functionally independent sets of invariants. The results presented here represent some new contributions to algebraic curve theory that can be used in many application areas, such model-based vision, object recognition, graphics, geometric modeling, and CAD.</description><identifier>ISSN: 0196-8858</identifier><identifier>EISSN: 1090-2074</identifier><identifier>DOI: 10.1006/aama.1999.0679</identifier><identifier>CODEN: AAPMEF</identifier><language>eng</language><publisher>San Diego, CA: Elsevier Inc</publisher><subject>Algebra ; Algebraic geometry ; Applied sciences ; Artificial intelligence ; Computer science; control theory; systems ; Exact sciences and technology ; Mathematics ; Pattern recognition. Digital image processing. Computational geometry ; Sciences and techniques of general use</subject><ispartof>Advances in applied mathematics, 2000-01, Vol.24 (1), p.65-87</ispartof><rights>2000 Academic Press</rights><rights>2000 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c355t-779123cb26032a5437eefd8c2b67298cd7c92d0869107f626feadf7045609ec33</citedby><cites>FETCH-LOGICAL-c355t-779123cb26032a5437eefd8c2b67298cd7c92d0869107f626feadf7045609ec33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0196885899906796$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,3537,4010,27900,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=1298540$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Unel, Mustafa</creatorcontrib><creatorcontrib>Wolovich, William A.</creatorcontrib><title>On the Construction of Complete Sets of Geometric Invariants for Algebraic Curves</title><title>Advances in applied mathematics</title><description>We provide a solution to the important problem of constructing complete independent sets of Euclidean and affine invariants for algebraic curves. We first simplify algebraic curves through polynomial decompositions and then use some classical geometric results to construct functionally independent sets of invariants. The results presented here represent some new contributions to algebraic curve theory that can be used in many application areas, such model-based vision, object recognition, graphics, geometric modeling, and CAD.</description><subject>Algebra</subject><subject>Algebraic geometry</subject><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Computer science; control theory; systems</subject><subject>Exact sciences and technology</subject><subject>Mathematics</subject><subject>Pattern recognition. Digital image processing. Computational geometry</subject><subject>Sciences and techniques of general use</subject><issn>0196-8858</issn><issn>1090-2074</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><recordid>eNp1kM1LxDAQxYMouK5ePffgtXWStklzXIofCwuLqOeQTScaaZslyS7439uygidPw8y8N2_4EXJLoaAA_F7rQRdUSlkAF_KMLChIyBmI6pwsgEqeN03dXJKrGL8AQDJeLsjLdszSJ2atH2MKB5OcHzNvp37Y95gwe8UU58ET-gFTcCZbj0cdnB6nufUhW_UfuAt6WrSHcMR4TS6s7iPe_NYleX98eGuf8832ad2uNrkp6zrlQkjKSrNjHEqm66oUiLZrDNtxwWRjOmEk66DhkoKwnHGLurMCqpqDRFOWS1Kc7prgYwxo1T64QYdvRUHNQNQMRM1A1AxkMtydDHsdje5t0KNx8c81pdYVTLLmJMPp-aPDoKJxOBrsXECTVOfdfwk_wDlzuw</recordid><startdate>200001</startdate><enddate>200001</enddate><creator>Unel, Mustafa</creator><creator>Wolovich, William A.</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>200001</creationdate><title>On the Construction of Complete Sets of Geometric Invariants for Algebraic Curves</title><author>Unel, Mustafa ; Wolovich, William A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c355t-779123cb26032a5437eefd8c2b67298cd7c92d0869107f626feadf7045609ec33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Algebra</topic><topic>Algebraic geometry</topic><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Computer science; control theory; systems</topic><topic>Exact sciences and technology</topic><topic>Mathematics</topic><topic>Pattern recognition. Digital image processing. Computational geometry</topic><topic>Sciences and techniques of general use</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Unel, Mustafa</creatorcontrib><creatorcontrib>Wolovich, William A.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Advances in applied mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Unel, Mustafa</au><au>Wolovich, William A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the Construction of Complete Sets of Geometric Invariants for Algebraic Curves</atitle><jtitle>Advances in applied mathematics</jtitle><date>2000-01</date><risdate>2000</risdate><volume>24</volume><issue>1</issue><spage>65</spage><epage>87</epage><pages>65-87</pages><issn>0196-8858</issn><eissn>1090-2074</eissn><coden>AAPMEF</coden><abstract>We provide a solution to the important problem of constructing complete independent sets of Euclidean and affine invariants for algebraic curves. We first simplify algebraic curves through polynomial decompositions and then use some classical geometric results to construct functionally independent sets of invariants. The results presented here represent some new contributions to algebraic curve theory that can be used in many application areas, such model-based vision, object recognition, graphics, geometric modeling, and CAD.</abstract><cop>San Diego, CA</cop><pub>Elsevier Inc</pub><doi>10.1006/aama.1999.0679</doi><tpages>23</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0196-8858 |
ispartof | Advances in applied mathematics, 2000-01, Vol.24 (1), p.65-87 |
issn | 0196-8858 1090-2074 |
language | eng |
recordid | cdi_crossref_primary_10_1006_aama_1999_0679 |
source | Elsevier ScienceDirect Journals; EZB-FREE-00999 freely available EZB journals |
subjects | Algebra Algebraic geometry Applied sciences Artificial intelligence Computer science control theory systems Exact sciences and technology Mathematics Pattern recognition. Digital image processing. Computational geometry Sciences and techniques of general use |
title | On the Construction of Complete Sets of Geometric Invariants for Algebraic Curves |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T12%3A00%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20Construction%20of%20Complete%20Sets%20of%20Geometric%20Invariants%20for%20Algebraic%20Curves&rft.jtitle=Advances%20in%20applied%20mathematics&rft.au=Unel,%20Mustafa&rft.date=2000-01&rft.volume=24&rft.issue=1&rft.spage=65&rft.epage=87&rft.pages=65-87&rft.issn=0196-8858&rft.eissn=1090-2074&rft.coden=AAPMEF&rft_id=info:doi/10.1006/aama.1999.0679&rft_dat=%3Celsevier_cross%3ES0196885899906796%3C/elsevier_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0196885899906796&rfr_iscdi=true |