In Inverse Problem for Trigonometric Polynomials: Does the Distribution of a Homogeneous Polynomial in a Gaussian Random Point Define the Polynomial?
It is shown that the probability distribution of the value of a homogeneous polynomial in two Gaussian variables determines the polynomial up to some explicitly described ambiguity, if the degree of the polynomial is five or less, or for generic polynomials of arbitrary degree.
Gespeichert in:
Veröffentlicht in: | Advances in applied mathematics 1994-09, Vol.15 (3), p.336-359 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 359 |
---|---|
container_issue | 3 |
container_start_page | 336 |
container_title | Advances in applied mathematics |
container_volume | 15 |
creator | Baryshnikov, Y.M. Stadje, W. |
description | It is shown that the probability distribution of the value of a homogeneous polynomial in two Gaussian variables determines the polynomial up to some explicitly described ambiguity, if the degree of the polynomial is five or less, or for generic polynomials of arbitrary degree. |
doi_str_mv | 10.1006/aama.1994.1012 |
format | Article |
fullrecord | <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1006_aama_1994_1012</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0196885884710128</els_id><sourcerecordid>S0196885884710128</sourcerecordid><originalsourceid>FETCH-LOGICAL-c312t-27ebd8e3f1246ee9bb6be194cc06e2e8c0e5f0adeeb5c71ee0d64a4ca77ffc543</originalsourceid><addsrcrecordid>eNp1kEFLAzEQhYMoWKtXzzl43ZpsdrO7XkRabQsFi9RzyGYnNdJNSrIt9If4f81aUS-ehuHN997wELqmZEQJ4bdStnJEqyqLK01P0ICSiiQpKbJTNCC04klZ5uU5ugjhnRBSpZwN0Mfc4rndgw-Al97VG2ixdh6vvFk761rovFF46TaHuBi5CXd44iDg7g3wxISo1rvOOIudxhLPXOvWYMHtwh8GGxu1qdyFYKTFL9I2ro26sR2egDYWvux-gftLdKZjFlx9zyF6fXpcjWfJ4nk6Hz8sEsVo2iVpAXVTAtM0zThAVde8BlplShEOKZSKQK6JbADqXBUUgDQ8k5mSRaG1yjM2RKOjr_IuBA9abL1ppT8ISkRfquhLFX2poi81AjdHYCuDkhvtpVUm_FCMccZzFs_K4xnE5_cGvAjKgFXQGA-qE40z_yV8ApQ4jto</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>In Inverse Problem for Trigonometric Polynomials: Does the Distribution of a Homogeneous Polynomial in a Gaussian Random Point Define the Polynomial?</title><source>Elsevier ScienceDirect Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Baryshnikov, Y.M. ; Stadje, W.</creator><creatorcontrib>Baryshnikov, Y.M. ; Stadje, W.</creatorcontrib><description>It is shown that the probability distribution of the value of a homogeneous polynomial in two Gaussian variables determines the polynomial up to some explicitly described ambiguity, if the degree of the polynomial is five or less, or for generic polynomials of arbitrary degree.</description><identifier>ISSN: 0196-8858</identifier><identifier>EISSN: 1090-2074</identifier><identifier>DOI: 10.1006/aama.1994.1012</identifier><identifier>CODEN: AAPMEF</identifier><language>eng</language><publisher>San Diego, CA: Elsevier Inc</publisher><subject>Exact sciences and technology ; Fourier analysis ; Functions of a complex variable ; Mathematical analysis ; Mathematics ; Sciences and techniques of general use ; Special functions</subject><ispartof>Advances in applied mathematics, 1994-09, Vol.15 (3), p.336-359</ispartof><rights>1994 Academic Press</rights><rights>1995 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0196885884710128$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=3363653$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Baryshnikov, Y.M.</creatorcontrib><creatorcontrib>Stadje, W.</creatorcontrib><title>In Inverse Problem for Trigonometric Polynomials: Does the Distribution of a Homogeneous Polynomial in a Gaussian Random Point Define the Polynomial?</title><title>Advances in applied mathematics</title><description>It is shown that the probability distribution of the value of a homogeneous polynomial in two Gaussian variables determines the polynomial up to some explicitly described ambiguity, if the degree of the polynomial is five or less, or for generic polynomials of arbitrary degree.</description><subject>Exact sciences and technology</subject><subject>Fourier analysis</subject><subject>Functions of a complex variable</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Sciences and techniques of general use</subject><subject>Special functions</subject><issn>0196-8858</issn><issn>1090-2074</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1994</creationdate><recordtype>article</recordtype><recordid>eNp1kEFLAzEQhYMoWKtXzzl43ZpsdrO7XkRabQsFi9RzyGYnNdJNSrIt9If4f81aUS-ehuHN997wELqmZEQJ4bdStnJEqyqLK01P0ICSiiQpKbJTNCC04klZ5uU5ugjhnRBSpZwN0Mfc4rndgw-Al97VG2ixdh6vvFk761rovFF46TaHuBi5CXd44iDg7g3wxISo1rvOOIudxhLPXOvWYMHtwh8GGxu1qdyFYKTFL9I2ro26sR2egDYWvux-gftLdKZjFlx9zyF6fXpcjWfJ4nk6Hz8sEsVo2iVpAXVTAtM0zThAVde8BlplShEOKZSKQK6JbADqXBUUgDQ8k5mSRaG1yjM2RKOjr_IuBA9abL1ppT8ISkRfquhLFX2poi81AjdHYCuDkhvtpVUm_FCMccZzFs_K4xnE5_cGvAjKgFXQGA-qE40z_yV8ApQ4jto</recordid><startdate>19940901</startdate><enddate>19940901</enddate><creator>Baryshnikov, Y.M.</creator><creator>Stadje, W.</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19940901</creationdate><title>In Inverse Problem for Trigonometric Polynomials: Does the Distribution of a Homogeneous Polynomial in a Gaussian Random Point Define the Polynomial?</title><author>Baryshnikov, Y.M. ; Stadje, W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c312t-27ebd8e3f1246ee9bb6be194cc06e2e8c0e5f0adeeb5c71ee0d64a4ca77ffc543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1994</creationdate><topic>Exact sciences and technology</topic><topic>Fourier analysis</topic><topic>Functions of a complex variable</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Sciences and techniques of general use</topic><topic>Special functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Baryshnikov, Y.M.</creatorcontrib><creatorcontrib>Stadje, W.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Advances in applied mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Baryshnikov, Y.M.</au><au>Stadje, W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In Inverse Problem for Trigonometric Polynomials: Does the Distribution of a Homogeneous Polynomial in a Gaussian Random Point Define the Polynomial?</atitle><jtitle>Advances in applied mathematics</jtitle><date>1994-09-01</date><risdate>1994</risdate><volume>15</volume><issue>3</issue><spage>336</spage><epage>359</epage><pages>336-359</pages><issn>0196-8858</issn><eissn>1090-2074</eissn><coden>AAPMEF</coden><abstract>It is shown that the probability distribution of the value of a homogeneous polynomial in two Gaussian variables determines the polynomial up to some explicitly described ambiguity, if the degree of the polynomial is five or less, or for generic polynomials of arbitrary degree.</abstract><cop>San Diego, CA</cop><pub>Elsevier Inc</pub><doi>10.1006/aama.1994.1012</doi><tpages>24</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0196-8858 |
ispartof | Advances in applied mathematics, 1994-09, Vol.15 (3), p.336-359 |
issn | 0196-8858 1090-2074 |
language | eng |
recordid | cdi_crossref_primary_10_1006_aama_1994_1012 |
source | Elsevier ScienceDirect Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Exact sciences and technology Fourier analysis Functions of a complex variable Mathematical analysis Mathematics Sciences and techniques of general use Special functions |
title | In Inverse Problem for Trigonometric Polynomials: Does the Distribution of a Homogeneous Polynomial in a Gaussian Random Point Define the Polynomial? |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T11%3A41%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In%20Inverse%20Problem%20for%20Trigonometric%20Polynomials:%20Does%20the%20Distribution%20of%20a%20Homogeneous%20Polynomial%20in%20a%20Gaussian%20Random%20Point%20Define%20the%20Polynomial?&rft.jtitle=Advances%20in%20applied%20mathematics&rft.au=Baryshnikov,%20Y.M.&rft.date=1994-09-01&rft.volume=15&rft.issue=3&rft.spage=336&rft.epage=359&rft.pages=336-359&rft.issn=0196-8858&rft.eissn=1090-2074&rft.coden=AAPMEF&rft_id=info:doi/10.1006/aama.1994.1012&rft_dat=%3Celsevier_cross%3ES0196885884710128%3C/elsevier_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0196885884710128&rfr_iscdi=true |