In Inverse Problem for Trigonometric Polynomials: Does the Distribution of a Homogeneous Polynomial in a Gaussian Random Point Define the Polynomial?

It is shown that the probability distribution of the value of a homogeneous polynomial in two Gaussian variables determines the polynomial up to some explicitly described ambiguity, if the degree of the polynomial is five or less, or for generic polynomials of arbitrary degree.

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advances in applied mathematics 1994-09, Vol.15 (3), p.336-359
Hauptverfasser: Baryshnikov, Y.M., Stadje, W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 359
container_issue 3
container_start_page 336
container_title Advances in applied mathematics
container_volume 15
creator Baryshnikov, Y.M.
Stadje, W.
description It is shown that the probability distribution of the value of a homogeneous polynomial in two Gaussian variables determines the polynomial up to some explicitly described ambiguity, if the degree of the polynomial is five or less, or for generic polynomials of arbitrary degree.
doi_str_mv 10.1006/aama.1994.1012
format Article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1006_aama_1994_1012</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0196885884710128</els_id><sourcerecordid>S0196885884710128</sourcerecordid><originalsourceid>FETCH-LOGICAL-c312t-27ebd8e3f1246ee9bb6be194cc06e2e8c0e5f0adeeb5c71ee0d64a4ca77ffc543</originalsourceid><addsrcrecordid>eNp1kEFLAzEQhYMoWKtXzzl43ZpsdrO7XkRabQsFi9RzyGYnNdJNSrIt9If4f81aUS-ehuHN997wELqmZEQJ4bdStnJEqyqLK01P0ICSiiQpKbJTNCC04klZ5uU5ugjhnRBSpZwN0Mfc4rndgw-Al97VG2ixdh6vvFk761rovFF46TaHuBi5CXd44iDg7g3wxISo1rvOOIudxhLPXOvWYMHtwh8GGxu1qdyFYKTFL9I2ro26sR2egDYWvux-gftLdKZjFlx9zyF6fXpcjWfJ4nk6Hz8sEsVo2iVpAXVTAtM0zThAVde8BlplShEOKZSKQK6JbADqXBUUgDQ8k5mSRaG1yjM2RKOjr_IuBA9abL1ppT8ISkRfquhLFX2poi81AjdHYCuDkhvtpVUm_FCMccZzFs_K4xnE5_cGvAjKgFXQGA-qE40z_yV8ApQ4jto</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>In Inverse Problem for Trigonometric Polynomials: Does the Distribution of a Homogeneous Polynomial in a Gaussian Random Point Define the Polynomial?</title><source>Elsevier ScienceDirect Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Baryshnikov, Y.M. ; Stadje, W.</creator><creatorcontrib>Baryshnikov, Y.M. ; Stadje, W.</creatorcontrib><description>It is shown that the probability distribution of the value of a homogeneous polynomial in two Gaussian variables determines the polynomial up to some explicitly described ambiguity, if the degree of the polynomial is five or less, or for generic polynomials of arbitrary degree.</description><identifier>ISSN: 0196-8858</identifier><identifier>EISSN: 1090-2074</identifier><identifier>DOI: 10.1006/aama.1994.1012</identifier><identifier>CODEN: AAPMEF</identifier><language>eng</language><publisher>San Diego, CA: Elsevier Inc</publisher><subject>Exact sciences and technology ; Fourier analysis ; Functions of a complex variable ; Mathematical analysis ; Mathematics ; Sciences and techniques of general use ; Special functions</subject><ispartof>Advances in applied mathematics, 1994-09, Vol.15 (3), p.336-359</ispartof><rights>1994 Academic Press</rights><rights>1995 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0196885884710128$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=3363653$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Baryshnikov, Y.M.</creatorcontrib><creatorcontrib>Stadje, W.</creatorcontrib><title>In Inverse Problem for Trigonometric Polynomials: Does the Distribution of a Homogeneous Polynomial in a Gaussian Random Point Define the Polynomial?</title><title>Advances in applied mathematics</title><description>It is shown that the probability distribution of the value of a homogeneous polynomial in two Gaussian variables determines the polynomial up to some explicitly described ambiguity, if the degree of the polynomial is five or less, or for generic polynomials of arbitrary degree.</description><subject>Exact sciences and technology</subject><subject>Fourier analysis</subject><subject>Functions of a complex variable</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Sciences and techniques of general use</subject><subject>Special functions</subject><issn>0196-8858</issn><issn>1090-2074</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1994</creationdate><recordtype>article</recordtype><recordid>eNp1kEFLAzEQhYMoWKtXzzl43ZpsdrO7XkRabQsFi9RzyGYnNdJNSrIt9If4f81aUS-ehuHN997wELqmZEQJ4bdStnJEqyqLK01P0ICSiiQpKbJTNCC04klZ5uU5ugjhnRBSpZwN0Mfc4rndgw-Al97VG2ixdh6vvFk761rovFF46TaHuBi5CXd44iDg7g3wxISo1rvOOIudxhLPXOvWYMHtwh8GGxu1qdyFYKTFL9I2ro26sR2egDYWvux-gftLdKZjFlx9zyF6fXpcjWfJ4nk6Hz8sEsVo2iVpAXVTAtM0zThAVde8BlplShEOKZSKQK6JbADqXBUUgDQ8k5mSRaG1yjM2RKOjr_IuBA9abL1ppT8ISkRfquhLFX2poi81AjdHYCuDkhvtpVUm_FCMccZzFs_K4xnE5_cGvAjKgFXQGA-qE40z_yV8ApQ4jto</recordid><startdate>19940901</startdate><enddate>19940901</enddate><creator>Baryshnikov, Y.M.</creator><creator>Stadje, W.</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19940901</creationdate><title>In Inverse Problem for Trigonometric Polynomials: Does the Distribution of a Homogeneous Polynomial in a Gaussian Random Point Define the Polynomial?</title><author>Baryshnikov, Y.M. ; Stadje, W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c312t-27ebd8e3f1246ee9bb6be194cc06e2e8c0e5f0adeeb5c71ee0d64a4ca77ffc543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1994</creationdate><topic>Exact sciences and technology</topic><topic>Fourier analysis</topic><topic>Functions of a complex variable</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Sciences and techniques of general use</topic><topic>Special functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Baryshnikov, Y.M.</creatorcontrib><creatorcontrib>Stadje, W.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Advances in applied mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Baryshnikov, Y.M.</au><au>Stadje, W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In Inverse Problem for Trigonometric Polynomials: Does the Distribution of a Homogeneous Polynomial in a Gaussian Random Point Define the Polynomial?</atitle><jtitle>Advances in applied mathematics</jtitle><date>1994-09-01</date><risdate>1994</risdate><volume>15</volume><issue>3</issue><spage>336</spage><epage>359</epage><pages>336-359</pages><issn>0196-8858</issn><eissn>1090-2074</eissn><coden>AAPMEF</coden><abstract>It is shown that the probability distribution of the value of a homogeneous polynomial in two Gaussian variables determines the polynomial up to some explicitly described ambiguity, if the degree of the polynomial is five or less, or for generic polynomials of arbitrary degree.</abstract><cop>San Diego, CA</cop><pub>Elsevier Inc</pub><doi>10.1006/aama.1994.1012</doi><tpages>24</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0196-8858
ispartof Advances in applied mathematics, 1994-09, Vol.15 (3), p.336-359
issn 0196-8858
1090-2074
language eng
recordid cdi_crossref_primary_10_1006_aama_1994_1012
source Elsevier ScienceDirect Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Exact sciences and technology
Fourier analysis
Functions of a complex variable
Mathematical analysis
Mathematics
Sciences and techniques of general use
Special functions
title In Inverse Problem for Trigonometric Polynomials: Does the Distribution of a Homogeneous Polynomial in a Gaussian Random Point Define the Polynomial?
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T11%3A41%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In%20Inverse%20Problem%20for%20Trigonometric%20Polynomials:%20Does%20the%20Distribution%20of%20a%20Homogeneous%20Polynomial%20in%20a%20Gaussian%20Random%20Point%20Define%20the%20Polynomial?&rft.jtitle=Advances%20in%20applied%20mathematics&rft.au=Baryshnikov,%20Y.M.&rft.date=1994-09-01&rft.volume=15&rft.issue=3&rft.spage=336&rft.epage=359&rft.pages=336-359&rft.issn=0196-8858&rft.eissn=1090-2074&rft.coden=AAPMEF&rft_id=info:doi/10.1006/aama.1994.1012&rft_dat=%3Celsevier_cross%3ES0196885884710128%3C/elsevier_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0196885884710128&rfr_iscdi=true