On restoring of the pre-stressed state in elastic bodies
This research is devoted to the development of theoretical foundations for identification of an essentially inhomogeneous prestressed state by analyzing the gain‐frequency characteristic of boundary points of the body. The proposed scheme to the reconstruction of inhomogeneous prestresses is constru...
Gespeichert in:
Veröffentlicht in: | Zeitschrift für angewandte Mathematik und Mechanik 2011-06, Vol.91 (6), p.485-492 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 492 |
---|---|
container_issue | 6 |
container_start_page | 485 |
container_title | Zeitschrift für angewandte Mathematik und Mechanik |
container_volume | 91 |
creator | Dudarev, V.V. Vatulyan, A.O. |
description | This research is devoted to the development of theoretical foundations for identification of an essentially inhomogeneous prestressed state by analyzing the gain‐frequency characteristic of boundary points of the body. The proposed scheme to the reconstruction of inhomogeneous prestresses is constructed on the iterative processes. It includes the finite element solution of the direct problem and the regularizing procedure to solve the Fredholm integral equation of the first kind in the inverse problem. In the series of one‐dimensional model examples it was shown that this scheme is effective.
This research is devoted to the development of theoretical foundations for identification of an essentially inhomogeneous prestressed state by analyzing the gain‐frequency characteristic of boundary points of the body. The proposed scheme to the reconstruction of inhomogeneous prestresses is constructed on the iterative processes. It includes the finite element solution of the direct problem and the regularizing procedure to solve the Fredholm integral equation of the first kind in the inverse problem. In the series of one‐dimensional model examples it was shown that this scheme is effective. |
doi_str_mv | 10.1002/zamm.201000186 |
format | Article |
fullrecord | <record><control><sourceid>istex_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_zamm_201000186</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ark_67375_WNG_7XWVQJDB_L</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3276-20ce2c6e3a9fc767d5aa49f72fddbee04ce6bec28672b8b4406561e6d50c7aaa3</originalsourceid><addsrcrecordid>eNqFj9FKwzAUhoMoWKe3XucFUpM0TdrLOXUqm0NQJ96END3V6LaOJKDz6e2oDO-8Ouf8_N-BD6FTRlNGKT_7Nstlymm3U1bIPZSwnDMiumsfJZQKQTiX6hAdhfC-7ZQsS1AxW2EPIbberV5x2-D4BnjtgYTYxQFqHKKJgN0Kw8KE6Cyu2tpBOEYHjVkEOPmdA_R4dfkwuiaT2fhmNJwQm3ElCacWuJWQmbKxSqo6N0aUjeJNXVcAVFiQFVheSMWrohKCylwykHVOrTLGZAOU9n-tb0Pw0Oi1d0vjN5pRvfXWW2-98-6Asgc-3QI2_7T1y3A6_cuSnnUhwteONf5DS5WpXM_vxlo9z5_uby_O9ST7AZyKbIE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>On restoring of the pre-stressed state in elastic bodies</title><source>Wiley Online Library All Journals</source><creator>Dudarev, V.V. ; Vatulyan, A.O.</creator><creatorcontrib>Dudarev, V.V. ; Vatulyan, A.O.</creatorcontrib><description>This research is devoted to the development of theoretical foundations for identification of an essentially inhomogeneous prestressed state by analyzing the gain‐frequency characteristic of boundary points of the body. The proposed scheme to the reconstruction of inhomogeneous prestresses is constructed on the iterative processes. It includes the finite element solution of the direct problem and the regularizing procedure to solve the Fredholm integral equation of the first kind in the inverse problem. In the series of one‐dimensional model examples it was shown that this scheme is effective.
This research is devoted to the development of theoretical foundations for identification of an essentially inhomogeneous prestressed state by analyzing the gain‐frequency characteristic of boundary points of the body. The proposed scheme to the reconstruction of inhomogeneous prestresses is constructed on the iterative processes. It includes the finite element solution of the direct problem and the regularizing procedure to solve the Fredholm integral equation of the first kind in the inverse problem. In the series of one‐dimensional model examples it was shown that this scheme is effective.</description><identifier>ISSN: 0044-2267</identifier><identifier>EISSN: 1521-4001</identifier><identifier>DOI: 10.1002/zamm.201000186</identifier><language>eng</language><publisher>Berlin: WILEY-VCH Verlag</publisher><subject>ill-posed problem ; inhomogeneous prestressed state ; inverse problem ; Residual stresses ; rod ; strip</subject><ispartof>Zeitschrift für angewandte Mathematik und Mechanik, 2011-06, Vol.91 (6), p.485-492</ispartof><rights>Copyright © 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3276-20ce2c6e3a9fc767d5aa49f72fddbee04ce6bec28672b8b4406561e6d50c7aaa3</citedby><cites>FETCH-LOGICAL-c3276-20ce2c6e3a9fc767d5aa49f72fddbee04ce6bec28672b8b4406561e6d50c7aaa3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fzamm.201000186$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fzamm.201000186$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Dudarev, V.V.</creatorcontrib><creatorcontrib>Vatulyan, A.O.</creatorcontrib><title>On restoring of the pre-stressed state in elastic bodies</title><title>Zeitschrift für angewandte Mathematik und Mechanik</title><addtitle>Z. angew. Math. Mech</addtitle><description>This research is devoted to the development of theoretical foundations for identification of an essentially inhomogeneous prestressed state by analyzing the gain‐frequency characteristic of boundary points of the body. The proposed scheme to the reconstruction of inhomogeneous prestresses is constructed on the iterative processes. It includes the finite element solution of the direct problem and the regularizing procedure to solve the Fredholm integral equation of the first kind in the inverse problem. In the series of one‐dimensional model examples it was shown that this scheme is effective.
This research is devoted to the development of theoretical foundations for identification of an essentially inhomogeneous prestressed state by analyzing the gain‐frequency characteristic of boundary points of the body. The proposed scheme to the reconstruction of inhomogeneous prestresses is constructed on the iterative processes. It includes the finite element solution of the direct problem and the regularizing procedure to solve the Fredholm integral equation of the first kind in the inverse problem. In the series of one‐dimensional model examples it was shown that this scheme is effective.</description><subject>ill-posed problem</subject><subject>inhomogeneous prestressed state</subject><subject>inverse problem</subject><subject>Residual stresses</subject><subject>rod</subject><subject>strip</subject><issn>0044-2267</issn><issn>1521-4001</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqFj9FKwzAUhoMoWKe3XucFUpM0TdrLOXUqm0NQJ96END3V6LaOJKDz6e2oDO-8Ouf8_N-BD6FTRlNGKT_7Nstlymm3U1bIPZSwnDMiumsfJZQKQTiX6hAdhfC-7ZQsS1AxW2EPIbberV5x2-D4BnjtgYTYxQFqHKKJgN0Kw8KE6Cyu2tpBOEYHjVkEOPmdA_R4dfkwuiaT2fhmNJwQm3ElCacWuJWQmbKxSqo6N0aUjeJNXVcAVFiQFVheSMWrohKCylwykHVOrTLGZAOU9n-tb0Pw0Oi1d0vjN5pRvfXWW2-98-6Asgc-3QI2_7T1y3A6_cuSnnUhwteONf5DS5WpXM_vxlo9z5_uby_O9ST7AZyKbIE</recordid><startdate>201106</startdate><enddate>201106</enddate><creator>Dudarev, V.V.</creator><creator>Vatulyan, A.O.</creator><general>WILEY-VCH Verlag</general><general>WILEY‐VCH Verlag</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>201106</creationdate><title>On restoring of the pre-stressed state in elastic bodies</title><author>Dudarev, V.V. ; Vatulyan, A.O.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3276-20ce2c6e3a9fc767d5aa49f72fddbee04ce6bec28672b8b4406561e6d50c7aaa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>ill-posed problem</topic><topic>inhomogeneous prestressed state</topic><topic>inverse problem</topic><topic>Residual stresses</topic><topic>rod</topic><topic>strip</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dudarev, V.V.</creatorcontrib><creatorcontrib>Vatulyan, A.O.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><jtitle>Zeitschrift für angewandte Mathematik und Mechanik</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dudarev, V.V.</au><au>Vatulyan, A.O.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On restoring of the pre-stressed state in elastic bodies</atitle><jtitle>Zeitschrift für angewandte Mathematik und Mechanik</jtitle><addtitle>Z. angew. Math. Mech</addtitle><date>2011-06</date><risdate>2011</risdate><volume>91</volume><issue>6</issue><spage>485</spage><epage>492</epage><pages>485-492</pages><issn>0044-2267</issn><eissn>1521-4001</eissn><abstract>This research is devoted to the development of theoretical foundations for identification of an essentially inhomogeneous prestressed state by analyzing the gain‐frequency characteristic of boundary points of the body. The proposed scheme to the reconstruction of inhomogeneous prestresses is constructed on the iterative processes. It includes the finite element solution of the direct problem and the regularizing procedure to solve the Fredholm integral equation of the first kind in the inverse problem. In the series of one‐dimensional model examples it was shown that this scheme is effective.
This research is devoted to the development of theoretical foundations for identification of an essentially inhomogeneous prestressed state by analyzing the gain‐frequency characteristic of boundary points of the body. The proposed scheme to the reconstruction of inhomogeneous prestresses is constructed on the iterative processes. It includes the finite element solution of the direct problem and the regularizing procedure to solve the Fredholm integral equation of the first kind in the inverse problem. In the series of one‐dimensional model examples it was shown that this scheme is effective.</abstract><cop>Berlin</cop><pub>WILEY-VCH Verlag</pub><doi>10.1002/zamm.201000186</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0044-2267 |
ispartof | Zeitschrift für angewandte Mathematik und Mechanik, 2011-06, Vol.91 (6), p.485-492 |
issn | 0044-2267 1521-4001 |
language | eng |
recordid | cdi_crossref_primary_10_1002_zamm_201000186 |
source | Wiley Online Library All Journals |
subjects | ill-posed problem inhomogeneous prestressed state inverse problem Residual stresses rod strip |
title | On restoring of the pre-stressed state in elastic bodies |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T16%3A52%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-istex_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20restoring%20of%20the%20pre-stressed%20state%20in%20elastic%20bodies&rft.jtitle=Zeitschrift%20f%C3%BCr%20angewandte%20Mathematik%20und%20Mechanik&rft.au=Dudarev,%20V.V.&rft.date=2011-06&rft.volume=91&rft.issue=6&rft.spage=485&rft.epage=492&rft.pages=485-492&rft.issn=0044-2267&rft.eissn=1521-4001&rft_id=info:doi/10.1002/zamm.201000186&rft_dat=%3Cistex_cross%3Eark_67375_WNG_7XWVQJDB_L%3C/istex_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |