On restoring of the pre-stressed state in elastic bodies

This research is devoted to the development of theoretical foundations for identification of an essentially inhomogeneous prestressed state by analyzing the gain‐frequency characteristic of boundary points of the body. The proposed scheme to the reconstruction of inhomogeneous prestresses is constru...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Zeitschrift für angewandte Mathematik und Mechanik 2011-06, Vol.91 (6), p.485-492
Hauptverfasser: Dudarev, V.V., Vatulyan, A.O.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 492
container_issue 6
container_start_page 485
container_title Zeitschrift für angewandte Mathematik und Mechanik
container_volume 91
creator Dudarev, V.V.
Vatulyan, A.O.
description This research is devoted to the development of theoretical foundations for identification of an essentially inhomogeneous prestressed state by analyzing the gain‐frequency characteristic of boundary points of the body. The proposed scheme to the reconstruction of inhomogeneous prestresses is constructed on the iterative processes. It includes the finite element solution of the direct problem and the regularizing procedure to solve the Fredholm integral equation of the first kind in the inverse problem. In the series of one‐dimensional model examples it was shown that this scheme is effective. This research is devoted to the development of theoretical foundations for identification of an essentially inhomogeneous prestressed state by analyzing the gain‐frequency characteristic of boundary points of the body. The proposed scheme to the reconstruction of inhomogeneous prestresses is constructed on the iterative processes. It includes the finite element solution of the direct problem and the regularizing procedure to solve the Fredholm integral equation of the first kind in the inverse problem. In the series of one‐dimensional model examples it was shown that this scheme is effective.
doi_str_mv 10.1002/zamm.201000186
format Article
fullrecord <record><control><sourceid>istex_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_zamm_201000186</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ark_67375_WNG_7XWVQJDB_L</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3276-20ce2c6e3a9fc767d5aa49f72fddbee04ce6bec28672b8b4406561e6d50c7aaa3</originalsourceid><addsrcrecordid>eNqFj9FKwzAUhoMoWKe3XucFUpM0TdrLOXUqm0NQJ96END3V6LaOJKDz6e2oDO-8Ouf8_N-BD6FTRlNGKT_7Nstlymm3U1bIPZSwnDMiumsfJZQKQTiX6hAdhfC-7ZQsS1AxW2EPIbberV5x2-D4BnjtgYTYxQFqHKKJgN0Kw8KE6Cyu2tpBOEYHjVkEOPmdA_R4dfkwuiaT2fhmNJwQm3ElCacWuJWQmbKxSqo6N0aUjeJNXVcAVFiQFVheSMWrohKCylwykHVOrTLGZAOU9n-tb0Pw0Oi1d0vjN5pRvfXWW2-98-6Asgc-3QI2_7T1y3A6_cuSnnUhwteONf5DS5WpXM_vxlo9z5_uby_O9ST7AZyKbIE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>On restoring of the pre-stressed state in elastic bodies</title><source>Wiley Online Library All Journals</source><creator>Dudarev, V.V. ; Vatulyan, A.O.</creator><creatorcontrib>Dudarev, V.V. ; Vatulyan, A.O.</creatorcontrib><description>This research is devoted to the development of theoretical foundations for identification of an essentially inhomogeneous prestressed state by analyzing the gain‐frequency characteristic of boundary points of the body. The proposed scheme to the reconstruction of inhomogeneous prestresses is constructed on the iterative processes. It includes the finite element solution of the direct problem and the regularizing procedure to solve the Fredholm integral equation of the first kind in the inverse problem. In the series of one‐dimensional model examples it was shown that this scheme is effective. This research is devoted to the development of theoretical foundations for identification of an essentially inhomogeneous prestressed state by analyzing the gain‐frequency characteristic of boundary points of the body. The proposed scheme to the reconstruction of inhomogeneous prestresses is constructed on the iterative processes. It includes the finite element solution of the direct problem and the regularizing procedure to solve the Fredholm integral equation of the first kind in the inverse problem. In the series of one‐dimensional model examples it was shown that this scheme is effective.</description><identifier>ISSN: 0044-2267</identifier><identifier>EISSN: 1521-4001</identifier><identifier>DOI: 10.1002/zamm.201000186</identifier><language>eng</language><publisher>Berlin: WILEY-VCH Verlag</publisher><subject>ill-posed problem ; inhomogeneous prestressed state ; inverse problem ; Residual stresses ; rod ; strip</subject><ispartof>Zeitschrift für angewandte Mathematik und Mechanik, 2011-06, Vol.91 (6), p.485-492</ispartof><rights>Copyright © 2011 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3276-20ce2c6e3a9fc767d5aa49f72fddbee04ce6bec28672b8b4406561e6d50c7aaa3</citedby><cites>FETCH-LOGICAL-c3276-20ce2c6e3a9fc767d5aa49f72fddbee04ce6bec28672b8b4406561e6d50c7aaa3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fzamm.201000186$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fzamm.201000186$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Dudarev, V.V.</creatorcontrib><creatorcontrib>Vatulyan, A.O.</creatorcontrib><title>On restoring of the pre-stressed state in elastic bodies</title><title>Zeitschrift für angewandte Mathematik und Mechanik</title><addtitle>Z. angew. Math. Mech</addtitle><description>This research is devoted to the development of theoretical foundations for identification of an essentially inhomogeneous prestressed state by analyzing the gain‐frequency characteristic of boundary points of the body. The proposed scheme to the reconstruction of inhomogeneous prestresses is constructed on the iterative processes. It includes the finite element solution of the direct problem and the regularizing procedure to solve the Fredholm integral equation of the first kind in the inverse problem. In the series of one‐dimensional model examples it was shown that this scheme is effective. This research is devoted to the development of theoretical foundations for identification of an essentially inhomogeneous prestressed state by analyzing the gain‐frequency characteristic of boundary points of the body. The proposed scheme to the reconstruction of inhomogeneous prestresses is constructed on the iterative processes. It includes the finite element solution of the direct problem and the regularizing procedure to solve the Fredholm integral equation of the first kind in the inverse problem. In the series of one‐dimensional model examples it was shown that this scheme is effective.</description><subject>ill-posed problem</subject><subject>inhomogeneous prestressed state</subject><subject>inverse problem</subject><subject>Residual stresses</subject><subject>rod</subject><subject>strip</subject><issn>0044-2267</issn><issn>1521-4001</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqFj9FKwzAUhoMoWKe3XucFUpM0TdrLOXUqm0NQJ96END3V6LaOJKDz6e2oDO-8Ouf8_N-BD6FTRlNGKT_7Nstlymm3U1bIPZSwnDMiumsfJZQKQTiX6hAdhfC-7ZQsS1AxW2EPIbberV5x2-D4BnjtgYTYxQFqHKKJgN0Kw8KE6Cyu2tpBOEYHjVkEOPmdA_R4dfkwuiaT2fhmNJwQm3ElCacWuJWQmbKxSqo6N0aUjeJNXVcAVFiQFVheSMWrohKCylwykHVOrTLGZAOU9n-tb0Pw0Oi1d0vjN5pRvfXWW2-98-6Asgc-3QI2_7T1y3A6_cuSnnUhwteONf5DS5WpXM_vxlo9z5_uby_O9ST7AZyKbIE</recordid><startdate>201106</startdate><enddate>201106</enddate><creator>Dudarev, V.V.</creator><creator>Vatulyan, A.O.</creator><general>WILEY-VCH Verlag</general><general>WILEY‐VCH Verlag</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>201106</creationdate><title>On restoring of the pre-stressed state in elastic bodies</title><author>Dudarev, V.V. ; Vatulyan, A.O.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3276-20ce2c6e3a9fc767d5aa49f72fddbee04ce6bec28672b8b4406561e6d50c7aaa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>ill-posed problem</topic><topic>inhomogeneous prestressed state</topic><topic>inverse problem</topic><topic>Residual stresses</topic><topic>rod</topic><topic>strip</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dudarev, V.V.</creatorcontrib><creatorcontrib>Vatulyan, A.O.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><jtitle>Zeitschrift für angewandte Mathematik und Mechanik</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dudarev, V.V.</au><au>Vatulyan, A.O.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On restoring of the pre-stressed state in elastic bodies</atitle><jtitle>Zeitschrift für angewandte Mathematik und Mechanik</jtitle><addtitle>Z. angew. Math. Mech</addtitle><date>2011-06</date><risdate>2011</risdate><volume>91</volume><issue>6</issue><spage>485</spage><epage>492</epage><pages>485-492</pages><issn>0044-2267</issn><eissn>1521-4001</eissn><abstract>This research is devoted to the development of theoretical foundations for identification of an essentially inhomogeneous prestressed state by analyzing the gain‐frequency characteristic of boundary points of the body. The proposed scheme to the reconstruction of inhomogeneous prestresses is constructed on the iterative processes. It includes the finite element solution of the direct problem and the regularizing procedure to solve the Fredholm integral equation of the first kind in the inverse problem. In the series of one‐dimensional model examples it was shown that this scheme is effective. This research is devoted to the development of theoretical foundations for identification of an essentially inhomogeneous prestressed state by analyzing the gain‐frequency characteristic of boundary points of the body. The proposed scheme to the reconstruction of inhomogeneous prestresses is constructed on the iterative processes. It includes the finite element solution of the direct problem and the regularizing procedure to solve the Fredholm integral equation of the first kind in the inverse problem. In the series of one‐dimensional model examples it was shown that this scheme is effective.</abstract><cop>Berlin</cop><pub>WILEY-VCH Verlag</pub><doi>10.1002/zamm.201000186</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0044-2267
ispartof Zeitschrift für angewandte Mathematik und Mechanik, 2011-06, Vol.91 (6), p.485-492
issn 0044-2267
1521-4001
language eng
recordid cdi_crossref_primary_10_1002_zamm_201000186
source Wiley Online Library All Journals
subjects ill-posed problem
inhomogeneous prestressed state
inverse problem
Residual stresses
rod
strip
title On restoring of the pre-stressed state in elastic bodies
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T16%3A52%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-istex_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20restoring%20of%20the%20pre-stressed%20state%20in%20elastic%20bodies&rft.jtitle=Zeitschrift%20f%C3%BCr%20angewandte%20Mathematik%20und%20Mechanik&rft.au=Dudarev,%20V.V.&rft.date=2011-06&rft.volume=91&rft.issue=6&rft.spage=485&rft.epage=492&rft.pages=485-492&rft.issn=0044-2267&rft.eissn=1521-4001&rft_id=info:doi/10.1002/zamm.201000186&rft_dat=%3Cistex_cross%3Eark_67375_WNG_7XWVQJDB_L%3C/istex_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true