Natural convection between two horizontal coaxial cylinders

The objective of our paper is to start the theoretical investigation of the most commonly used mathematical model for natural convection in a horizontal annulus. First, one shows existence of solutions for the unsteady problem. Then, for any Prandtl number and inverse relative gap width, existence,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Zeitschrift für angewandte Mathematik und Mechanik 2009-05, Vol.89 (5), p.399-413
Hauptverfasser: Passerini, A., Růžička, M., Thäter, G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 413
container_issue 5
container_start_page 399
container_title Zeitschrift für angewandte Mathematik und Mechanik
container_volume 89
creator Passerini, A.
Růžička, M.
Thäter, G.
description The objective of our paper is to start the theoretical investigation of the most commonly used mathematical model for natural convection in a horizontal annulus. First, one shows existence of solutions for the unsteady problem. Then, for any Prandtl number and inverse relative gap width, existence, and stability of a steady solution is proved, provided that the Rayleigh number is sufficiently small. The same is also proved for any Rayleigh number provided the inverse relative gap width is sufficiently small. Furthermore, exponential decay to the steady symmetric solution and uniqueness hold true under stronger restrictions to the Rayleigh number. The objective of this paper is to start the theoretical investigation of the most commonly used mathematical model for natural convection in a horizontal annulus. First, one shows existence of solutions for the unsteady problem. Then, for any Prandtl number and inverse relative gap width, existence, and stability of a steady solution is proved, provided that the Rayleigh number is sufficiently small. The same is also proved for any Rayleigh number provided the inverse relative gap width is sufficiently small.
doi_str_mv 10.1002/zamm.200800222
format Article
fullrecord <record><control><sourceid>wiley_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_zamm_200800222</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ZAMM200800222</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3572-32730cd7d7f29d7d1f7e73ba39c295644d6960f1d56de2b12537af2b68dc4ab23</originalsourceid><addsrcrecordid>eNqFj8FLwzAYxYMoOKdXz7147Ey-pMmKp1F0E7YJogheQpqkGO3akVS77a-3szK8eXq8j_d7Hw-hS4JHBGO43qnVagQYjzsDcIQGJAESM4zJMRpgzFgMwMUpOgvhHXfXlNABulmq5tOrMtJ19WV14-oqym3TWltFTVtHb7V3u7pqfhJq4_a6LV1lrA_n6KRQZbAXvzpEz3e3T9ksnj9M77PJPNY0ERBTEBRrI4woIO2EFMIKmiuaakgTzpjhKccFMQk3FnICCRWqgJyPjWYqBzpEo75X-zoEbwu59m6l_FYSLPfT5X66PEzvgKseWKugVVl4VWkXDhQQRgknvMulfa51pd3-0ypfJ4vF3x9xz7rQ2M2BVf5DckFFIl-WUznLlnQhHjNJ6Tfd93nq</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Natural convection between two horizontal coaxial cylinders</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Passerini, A. ; Růžička, M. ; Thäter, G.</creator><creatorcontrib>Passerini, A. ; Růžička, M. ; Thäter, G.</creatorcontrib><description>The objective of our paper is to start the theoretical investigation of the most commonly used mathematical model for natural convection in a horizontal annulus. First, one shows existence of solutions for the unsteady problem. Then, for any Prandtl number and inverse relative gap width, existence, and stability of a steady solution is proved, provided that the Rayleigh number is sufficiently small. The same is also proved for any Rayleigh number provided the inverse relative gap width is sufficiently small. Furthermore, exponential decay to the steady symmetric solution and uniqueness hold true under stronger restrictions to the Rayleigh number. The objective of this paper is to start the theoretical investigation of the most commonly used mathematical model for natural convection in a horizontal annulus. First, one shows existence of solutions for the unsteady problem. Then, for any Prandtl number and inverse relative gap width, existence, and stability of a steady solution is proved, provided that the Rayleigh number is sufficiently small. The same is also proved for any Rayleigh number provided the inverse relative gap width is sufficiently small.</description><identifier>ISSN: 0044-2267</identifier><identifier>EISSN: 1521-4001</identifier><identifier>DOI: 10.1002/zamm.200800222</identifier><identifier>CODEN: ZAMMAX</identifier><language>eng</language><publisher>Berlin: WILEY-VCH Verlag</publisher><subject>Exact sciences and technology ; Mathematics ; Numerical analysis ; Numerical analysis. Scientific computation ; Oberbeck-Boussinesq ; Sciences and techniques of general use ; stability ; symmetric steady flow</subject><ispartof>Zeitschrift für angewandte Mathematik und Mechanik, 2009-05, Vol.89 (5), p.399-413</ispartof><rights>Copyright © 2009 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2009 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3572-32730cd7d7f29d7d1f7e73ba39c295644d6960f1d56de2b12537af2b68dc4ab23</citedby><cites>FETCH-LOGICAL-c3572-32730cd7d7f29d7d1f7e73ba39c295644d6960f1d56de2b12537af2b68dc4ab23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fzamm.200800222$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fzamm.200800222$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=21431616$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Passerini, A.</creatorcontrib><creatorcontrib>Růžička, M.</creatorcontrib><creatorcontrib>Thäter, G.</creatorcontrib><title>Natural convection between two horizontal coaxial cylinders</title><title>Zeitschrift für angewandte Mathematik und Mechanik</title><addtitle>Z. angew. Math. Mech</addtitle><description>The objective of our paper is to start the theoretical investigation of the most commonly used mathematical model for natural convection in a horizontal annulus. First, one shows existence of solutions for the unsteady problem. Then, for any Prandtl number and inverse relative gap width, existence, and stability of a steady solution is proved, provided that the Rayleigh number is sufficiently small. The same is also proved for any Rayleigh number provided the inverse relative gap width is sufficiently small. Furthermore, exponential decay to the steady symmetric solution and uniqueness hold true under stronger restrictions to the Rayleigh number. The objective of this paper is to start the theoretical investigation of the most commonly used mathematical model for natural convection in a horizontal annulus. First, one shows existence of solutions for the unsteady problem. Then, for any Prandtl number and inverse relative gap width, existence, and stability of a steady solution is proved, provided that the Rayleigh number is sufficiently small. The same is also proved for any Rayleigh number provided the inverse relative gap width is sufficiently small.</description><subject>Exact sciences and technology</subject><subject>Mathematics</subject><subject>Numerical analysis</subject><subject>Numerical analysis. Scientific computation</subject><subject>Oberbeck-Boussinesq</subject><subject>Sciences and techniques of general use</subject><subject>stability</subject><subject>symmetric steady flow</subject><issn>0044-2267</issn><issn>1521-4001</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNqFj8FLwzAYxYMoOKdXz7147Ey-pMmKp1F0E7YJogheQpqkGO3akVS77a-3szK8eXq8j_d7Hw-hS4JHBGO43qnVagQYjzsDcIQGJAESM4zJMRpgzFgMwMUpOgvhHXfXlNABulmq5tOrMtJ19WV14-oqym3TWltFTVtHb7V3u7pqfhJq4_a6LV1lrA_n6KRQZbAXvzpEz3e3T9ksnj9M77PJPNY0ERBTEBRrI4woIO2EFMIKmiuaakgTzpjhKccFMQk3FnICCRWqgJyPjWYqBzpEo75X-zoEbwu59m6l_FYSLPfT5X66PEzvgKseWKugVVl4VWkXDhQQRgknvMulfa51pd3-0ypfJ4vF3x9xz7rQ2M2BVf5DckFFIl-WUznLlnQhHjNJ6Tfd93nq</recordid><startdate>200905</startdate><enddate>200905</enddate><creator>Passerini, A.</creator><creator>Růžička, M.</creator><creator>Thäter, G.</creator><general>WILEY-VCH Verlag</general><general>WILEY‐VCH Verlag</general><general>Wiley-VCH</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>200905</creationdate><title>Natural convection between two horizontal coaxial cylinders</title><author>Passerini, A. ; Růžička, M. ; Thäter, G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3572-32730cd7d7f29d7d1f7e73ba39c295644d6960f1d56de2b12537af2b68dc4ab23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Exact sciences and technology</topic><topic>Mathematics</topic><topic>Numerical analysis</topic><topic>Numerical analysis. Scientific computation</topic><topic>Oberbeck-Boussinesq</topic><topic>Sciences and techniques of general use</topic><topic>stability</topic><topic>symmetric steady flow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Passerini, A.</creatorcontrib><creatorcontrib>Růžička, M.</creatorcontrib><creatorcontrib>Thäter, G.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Zeitschrift für angewandte Mathematik und Mechanik</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Passerini, A.</au><au>Růžička, M.</au><au>Thäter, G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Natural convection between two horizontal coaxial cylinders</atitle><jtitle>Zeitschrift für angewandte Mathematik und Mechanik</jtitle><addtitle>Z. angew. Math. Mech</addtitle><date>2009-05</date><risdate>2009</risdate><volume>89</volume><issue>5</issue><spage>399</spage><epage>413</epage><pages>399-413</pages><issn>0044-2267</issn><eissn>1521-4001</eissn><coden>ZAMMAX</coden><abstract>The objective of our paper is to start the theoretical investigation of the most commonly used mathematical model for natural convection in a horizontal annulus. First, one shows existence of solutions for the unsteady problem. Then, for any Prandtl number and inverse relative gap width, existence, and stability of a steady solution is proved, provided that the Rayleigh number is sufficiently small. The same is also proved for any Rayleigh number provided the inverse relative gap width is sufficiently small. Furthermore, exponential decay to the steady symmetric solution and uniqueness hold true under stronger restrictions to the Rayleigh number. The objective of this paper is to start the theoretical investigation of the most commonly used mathematical model for natural convection in a horizontal annulus. First, one shows existence of solutions for the unsteady problem. Then, for any Prandtl number and inverse relative gap width, existence, and stability of a steady solution is proved, provided that the Rayleigh number is sufficiently small. The same is also proved for any Rayleigh number provided the inverse relative gap width is sufficiently small.</abstract><cop>Berlin</cop><pub>WILEY-VCH Verlag</pub><doi>10.1002/zamm.200800222</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0044-2267
ispartof Zeitschrift für angewandte Mathematik und Mechanik, 2009-05, Vol.89 (5), p.399-413
issn 0044-2267
1521-4001
language eng
recordid cdi_crossref_primary_10_1002_zamm_200800222
source Wiley Online Library Journals Frontfile Complete
subjects Exact sciences and technology
Mathematics
Numerical analysis
Numerical analysis. Scientific computation
Oberbeck-Boussinesq
Sciences and techniques of general use
stability
symmetric steady flow
title Natural convection between two horizontal coaxial cylinders
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T09%3A26%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Natural%20convection%20between%20two%20horizontal%20coaxial%20cylinders&rft.jtitle=Zeitschrift%20f%C3%BCr%20angewandte%20Mathematik%20und%20Mechanik&rft.au=Passerini,%20A.&rft.date=2009-05&rft.volume=89&rft.issue=5&rft.spage=399&rft.epage=413&rft.pages=399-413&rft.issn=0044-2267&rft.eissn=1521-4001&rft.coden=ZAMMAX&rft_id=info:doi/10.1002/zamm.200800222&rft_dat=%3Cwiley_cross%3EZAMM200800222%3C/wiley_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true