Natural convection between two horizontal coaxial cylinders
The objective of our paper is to start the theoretical investigation of the most commonly used mathematical model for natural convection in a horizontal annulus. First, one shows existence of solutions for the unsteady problem. Then, for any Prandtl number and inverse relative gap width, existence,...
Gespeichert in:
Veröffentlicht in: | Zeitschrift für angewandte Mathematik und Mechanik 2009-05, Vol.89 (5), p.399-413 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 413 |
---|---|
container_issue | 5 |
container_start_page | 399 |
container_title | Zeitschrift für angewandte Mathematik und Mechanik |
container_volume | 89 |
creator | Passerini, A. Růžička, M. Thäter, G. |
description | The objective of our paper is to start the theoretical investigation of the most commonly used mathematical model for natural convection in a horizontal annulus. First, one shows existence of solutions for the unsteady problem. Then, for any Prandtl number and inverse relative gap width, existence, and stability of a steady solution is proved, provided that the Rayleigh number is sufficiently small. The same is also proved for any Rayleigh number provided the inverse relative gap width is sufficiently small. Furthermore, exponential decay to the steady symmetric solution and uniqueness hold true under stronger restrictions to the Rayleigh number.
The objective of this paper is to start the theoretical investigation of the most commonly used mathematical model for natural convection in a horizontal annulus. First, one shows existence of solutions for the unsteady problem. Then, for any Prandtl number and inverse relative gap width, existence, and stability of a steady solution is proved, provided that the Rayleigh number is sufficiently small. The same is also proved for any Rayleigh number provided the inverse relative gap width is sufficiently small. |
doi_str_mv | 10.1002/zamm.200800222 |
format | Article |
fullrecord | <record><control><sourceid>wiley_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_zamm_200800222</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ZAMM200800222</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3572-32730cd7d7f29d7d1f7e73ba39c295644d6960f1d56de2b12537af2b68dc4ab23</originalsourceid><addsrcrecordid>eNqFj8FLwzAYxYMoOKdXz7147Ey-pMmKp1F0E7YJogheQpqkGO3akVS77a-3szK8eXq8j_d7Hw-hS4JHBGO43qnVagQYjzsDcIQGJAESM4zJMRpgzFgMwMUpOgvhHXfXlNABulmq5tOrMtJ19WV14-oqym3TWltFTVtHb7V3u7pqfhJq4_a6LV1lrA_n6KRQZbAXvzpEz3e3T9ksnj9M77PJPNY0ERBTEBRrI4woIO2EFMIKmiuaakgTzpjhKccFMQk3FnICCRWqgJyPjWYqBzpEo75X-zoEbwu59m6l_FYSLPfT5X66PEzvgKseWKugVVl4VWkXDhQQRgknvMulfa51pd3-0ypfJ4vF3x9xz7rQ2M2BVf5DckFFIl-WUznLlnQhHjNJ6Tfd93nq</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Natural convection between two horizontal coaxial cylinders</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Passerini, A. ; Růžička, M. ; Thäter, G.</creator><creatorcontrib>Passerini, A. ; Růžička, M. ; Thäter, G.</creatorcontrib><description>The objective of our paper is to start the theoretical investigation of the most commonly used mathematical model for natural convection in a horizontal annulus. First, one shows existence of solutions for the unsteady problem. Then, for any Prandtl number and inverse relative gap width, existence, and stability of a steady solution is proved, provided that the Rayleigh number is sufficiently small. The same is also proved for any Rayleigh number provided the inverse relative gap width is sufficiently small. Furthermore, exponential decay to the steady symmetric solution and uniqueness hold true under stronger restrictions to the Rayleigh number.
The objective of this paper is to start the theoretical investigation of the most commonly used mathematical model for natural convection in a horizontal annulus. First, one shows existence of solutions for the unsteady problem. Then, for any Prandtl number and inverse relative gap width, existence, and stability of a steady solution is proved, provided that the Rayleigh number is sufficiently small. The same is also proved for any Rayleigh number provided the inverse relative gap width is sufficiently small.</description><identifier>ISSN: 0044-2267</identifier><identifier>EISSN: 1521-4001</identifier><identifier>DOI: 10.1002/zamm.200800222</identifier><identifier>CODEN: ZAMMAX</identifier><language>eng</language><publisher>Berlin: WILEY-VCH Verlag</publisher><subject>Exact sciences and technology ; Mathematics ; Numerical analysis ; Numerical analysis. Scientific computation ; Oberbeck-Boussinesq ; Sciences and techniques of general use ; stability ; symmetric steady flow</subject><ispartof>Zeitschrift für angewandte Mathematik und Mechanik, 2009-05, Vol.89 (5), p.399-413</ispartof><rights>Copyright © 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>2009 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3572-32730cd7d7f29d7d1f7e73ba39c295644d6960f1d56de2b12537af2b68dc4ab23</citedby><cites>FETCH-LOGICAL-c3572-32730cd7d7f29d7d1f7e73ba39c295644d6960f1d56de2b12537af2b68dc4ab23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fzamm.200800222$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fzamm.200800222$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21431616$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Passerini, A.</creatorcontrib><creatorcontrib>Růžička, M.</creatorcontrib><creatorcontrib>Thäter, G.</creatorcontrib><title>Natural convection between two horizontal coaxial cylinders</title><title>Zeitschrift für angewandte Mathematik und Mechanik</title><addtitle>Z. angew. Math. Mech</addtitle><description>The objective of our paper is to start the theoretical investigation of the most commonly used mathematical model for natural convection in a horizontal annulus. First, one shows existence of solutions for the unsteady problem. Then, for any Prandtl number and inverse relative gap width, existence, and stability of a steady solution is proved, provided that the Rayleigh number is sufficiently small. The same is also proved for any Rayleigh number provided the inverse relative gap width is sufficiently small. Furthermore, exponential decay to the steady symmetric solution and uniqueness hold true under stronger restrictions to the Rayleigh number.
The objective of this paper is to start the theoretical investigation of the most commonly used mathematical model for natural convection in a horizontal annulus. First, one shows existence of solutions for the unsteady problem. Then, for any Prandtl number and inverse relative gap width, existence, and stability of a steady solution is proved, provided that the Rayleigh number is sufficiently small. The same is also proved for any Rayleigh number provided the inverse relative gap width is sufficiently small.</description><subject>Exact sciences and technology</subject><subject>Mathematics</subject><subject>Numerical analysis</subject><subject>Numerical analysis. Scientific computation</subject><subject>Oberbeck-Boussinesq</subject><subject>Sciences and techniques of general use</subject><subject>stability</subject><subject>symmetric steady flow</subject><issn>0044-2267</issn><issn>1521-4001</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNqFj8FLwzAYxYMoOKdXz7147Ey-pMmKp1F0E7YJogheQpqkGO3akVS77a-3szK8eXq8j_d7Hw-hS4JHBGO43qnVagQYjzsDcIQGJAESM4zJMRpgzFgMwMUpOgvhHXfXlNABulmq5tOrMtJ19WV14-oqym3TWltFTVtHb7V3u7pqfhJq4_a6LV1lrA_n6KRQZbAXvzpEz3e3T9ksnj9M77PJPNY0ERBTEBRrI4woIO2EFMIKmiuaakgTzpjhKccFMQk3FnICCRWqgJyPjWYqBzpEo75X-zoEbwu59m6l_FYSLPfT5X66PEzvgKseWKugVVl4VWkXDhQQRgknvMulfa51pd3-0ypfJ4vF3x9xz7rQ2M2BVf5DckFFIl-WUznLlnQhHjNJ6Tfd93nq</recordid><startdate>200905</startdate><enddate>200905</enddate><creator>Passerini, A.</creator><creator>Růžička, M.</creator><creator>Thäter, G.</creator><general>WILEY-VCH Verlag</general><general>WILEY‐VCH Verlag</general><general>Wiley-VCH</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>200905</creationdate><title>Natural convection between two horizontal coaxial cylinders</title><author>Passerini, A. ; Růžička, M. ; Thäter, G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3572-32730cd7d7f29d7d1f7e73ba39c295644d6960f1d56de2b12537af2b68dc4ab23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Exact sciences and technology</topic><topic>Mathematics</topic><topic>Numerical analysis</topic><topic>Numerical analysis. Scientific computation</topic><topic>Oberbeck-Boussinesq</topic><topic>Sciences and techniques of general use</topic><topic>stability</topic><topic>symmetric steady flow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Passerini, A.</creatorcontrib><creatorcontrib>Růžička, M.</creatorcontrib><creatorcontrib>Thäter, G.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Zeitschrift für angewandte Mathematik und Mechanik</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Passerini, A.</au><au>Růžička, M.</au><au>Thäter, G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Natural convection between two horizontal coaxial cylinders</atitle><jtitle>Zeitschrift für angewandte Mathematik und Mechanik</jtitle><addtitle>Z. angew. Math. Mech</addtitle><date>2009-05</date><risdate>2009</risdate><volume>89</volume><issue>5</issue><spage>399</spage><epage>413</epage><pages>399-413</pages><issn>0044-2267</issn><eissn>1521-4001</eissn><coden>ZAMMAX</coden><abstract>The objective of our paper is to start the theoretical investigation of the most commonly used mathematical model for natural convection in a horizontal annulus. First, one shows existence of solutions for the unsteady problem. Then, for any Prandtl number and inverse relative gap width, existence, and stability of a steady solution is proved, provided that the Rayleigh number is sufficiently small. The same is also proved for any Rayleigh number provided the inverse relative gap width is sufficiently small. Furthermore, exponential decay to the steady symmetric solution and uniqueness hold true under stronger restrictions to the Rayleigh number.
The objective of this paper is to start the theoretical investigation of the most commonly used mathematical model for natural convection in a horizontal annulus. First, one shows existence of solutions for the unsteady problem. Then, for any Prandtl number and inverse relative gap width, existence, and stability of a steady solution is proved, provided that the Rayleigh number is sufficiently small. The same is also proved for any Rayleigh number provided the inverse relative gap width is sufficiently small.</abstract><cop>Berlin</cop><pub>WILEY-VCH Verlag</pub><doi>10.1002/zamm.200800222</doi><tpages>15</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0044-2267 |
ispartof | Zeitschrift für angewandte Mathematik und Mechanik, 2009-05, Vol.89 (5), p.399-413 |
issn | 0044-2267 1521-4001 |
language | eng |
recordid | cdi_crossref_primary_10_1002_zamm_200800222 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Exact sciences and technology Mathematics Numerical analysis Numerical analysis. Scientific computation Oberbeck-Boussinesq Sciences and techniques of general use stability symmetric steady flow |
title | Natural convection between two horizontal coaxial cylinders |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T09%3A26%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Natural%20convection%20between%20two%20horizontal%20coaxial%20cylinders&rft.jtitle=Zeitschrift%20f%C3%BCr%20angewandte%20Mathematik%20und%20Mechanik&rft.au=Passerini,%20A.&rft.date=2009-05&rft.volume=89&rft.issue=5&rft.spage=399&rft.epage=413&rft.pages=399-413&rft.issn=0044-2267&rft.eissn=1521-4001&rft.coden=ZAMMAX&rft_id=info:doi/10.1002/zamm.200800222&rft_dat=%3Cwiley_cross%3EZAMM200800222%3C/wiley_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |