Vibration of generalized double well oscillators

We have applied the Melnikov criterion to examine a global homoclinic bifurcation and a transition to chaos in the case of the double well dynamical system with a nonlinear fractional damping term and external excitation. The usual double well Duffing potential having one negative square term and on...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Zeitschrift für angewandte Mathematik und Mechanik 2007-09, Vol.87 (8-9), p.590-602
Hauptverfasser: Litak, G., Borowiec, M., Syta, A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 602
container_issue 8-9
container_start_page 590
container_title Zeitschrift für angewandte Mathematik und Mechanik
container_volume 87
creator Litak, G.
Borowiec, M.
Syta, A.
description We have applied the Melnikov criterion to examine a global homoclinic bifurcation and a transition to chaos in the case of the double well dynamical system with a nonlinear fractional damping term and external excitation. The usual double well Duffing potential having one negative square term and one positive quartic term has been generalized to a double well potential with a negative square term and a positive one with an arbitrary real exponent q > 2. We have also used a fractional damping term with an arbitrary power p applied to velocity which enables one to cover a wide range of realistic damping factors: from dry friction p → 0 to turbulent resistance phenomena p = 2. Using perturbation methods we have found a critical forcing amplitude μc above which the system may behave chaotically. Our results show that the vibrating system is less stable in transition to chaos for smaller p satisfying an exponential scaling low. The critical amplitude μc is an exponential function of p. The analytical results have been illustrated by numerical simulations using standard nonlinear tools such as Poincare maps and the maximal Lyapunov exponent. As usual for chosen system parameters we have identified a chaotic motion above the critical Melnikov amplitude μc.
doi_str_mv 10.1002/zamm.200610338
format Article
fullrecord <record><control><sourceid>istex_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_zamm_200610338</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ark_67375_WNG_W6F47B93_S</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3978-895d7aa4f17693e37326538f3f7662ae37b00f1fe8c5becf05c39e4b11f251fa3</originalsourceid><addsrcrecordid>eNqFj0tPAjEUhRujiYhuXc_G5eDte2aJRNAEdOGDxE3TKa2pFoa0EIRf75Ax6M7VTU7Od24-hC4x9DAAud7p-bxHAAQGSosj1MGc4JwB4GPUAWAsJ0TIU3SW0gc0aYlpB8Grr6Je-XqR1S57twsbdfA7O8tm9boKNtvYELI6GR-CXtUxnaMTp0OyFz-3i16Gt8-Du3z8OLof9Me5oaUs8qLkM6k1c1iKkloqKRGcFo46KQTRTVABOOxsYXhljQPecJZVGDvCsdO0i3rtrol1StE6tYx-ruNWYVB7X7X3VQffBrhqgaVORgcX9cL49EuVUDBW8KZXtr2ND3b7z6p6608mf3_kLevTyn4dWB0_lZBUcjV9GKmpGDJ5U1L1RL8BLs51fg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Vibration of generalized double well oscillators</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Litak, G. ; Borowiec, M. ; Syta, A.</creator><creatorcontrib>Litak, G. ; Borowiec, M. ; Syta, A.</creatorcontrib><description>We have applied the Melnikov criterion to examine a global homoclinic bifurcation and a transition to chaos in the case of the double well dynamical system with a nonlinear fractional damping term and external excitation. The usual double well Duffing potential having one negative square term and one positive quartic term has been generalized to a double well potential with a negative square term and a positive one with an arbitrary real exponent q &gt; 2. We have also used a fractional damping term with an arbitrary power p applied to velocity which enables one to cover a wide range of realistic damping factors: from dry friction p → 0 to turbulent resistance phenomena p = 2. Using perturbation methods we have found a critical forcing amplitude μc above which the system may behave chaotically. Our results show that the vibrating system is less stable in transition to chaos for smaller p satisfying an exponential scaling low. The critical amplitude μc is an exponential function of p. The analytical results have been illustrated by numerical simulations using standard nonlinear tools such as Poincare maps and the maximal Lyapunov exponent. As usual for chosen system parameters we have identified a chaotic motion above the critical Melnikov amplitude μc.</description><identifier>ISSN: 0044-2267</identifier><identifier>EISSN: 1521-4001</identifier><identifier>DOI: 10.1002/zamm.200610338</identifier><identifier>CODEN: ZAMMAX</identifier><language>eng</language><publisher>Berlin: WILEY-VCH Verlag</publisher><subject>chaotic vibration ; Duffing oscillator ; Exact sciences and technology ; Global analysis, analysis on manifolds ; Mathematical analysis ; Mathematics ; Melnikov criterion ; Numerical analysis ; Numerical analysis. Scientific computation ; Numerical linear algebra ; Ordinary differential equations ; Sciences and techniques of general use ; Special functions ; Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds</subject><ispartof>Zeitschrift für angewandte Mathematik und Mechanik, 2007-09, Vol.87 (8-9), p.590-602</ispartof><rights>Copyright © 2007 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2008 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3978-895d7aa4f17693e37326538f3f7662ae37b00f1fe8c5becf05c39e4b11f251fa3</citedby><cites>FETCH-LOGICAL-c3978-895d7aa4f17693e37326538f3f7662ae37b00f1fe8c5becf05c39e4b11f251fa3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fzamm.200610338$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fzamm.200610338$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27923,27924,45573,45574</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=19084485$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Litak, G.</creatorcontrib><creatorcontrib>Borowiec, M.</creatorcontrib><creatorcontrib>Syta, A.</creatorcontrib><title>Vibration of generalized double well oscillators</title><title>Zeitschrift für angewandte Mathematik und Mechanik</title><addtitle>Z. angew. Math. Mech</addtitle><description>We have applied the Melnikov criterion to examine a global homoclinic bifurcation and a transition to chaos in the case of the double well dynamical system with a nonlinear fractional damping term and external excitation. The usual double well Duffing potential having one negative square term and one positive quartic term has been generalized to a double well potential with a negative square term and a positive one with an arbitrary real exponent q &gt; 2. We have also used a fractional damping term with an arbitrary power p applied to velocity which enables one to cover a wide range of realistic damping factors: from dry friction p → 0 to turbulent resistance phenomena p = 2. Using perturbation methods we have found a critical forcing amplitude μc above which the system may behave chaotically. Our results show that the vibrating system is less stable in transition to chaos for smaller p satisfying an exponential scaling low. The critical amplitude μc is an exponential function of p. The analytical results have been illustrated by numerical simulations using standard nonlinear tools such as Poincare maps and the maximal Lyapunov exponent. As usual for chosen system parameters we have identified a chaotic motion above the critical Melnikov amplitude μc.</description><subject>chaotic vibration</subject><subject>Duffing oscillator</subject><subject>Exact sciences and technology</subject><subject>Global analysis, analysis on manifolds</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Melnikov criterion</subject><subject>Numerical analysis</subject><subject>Numerical analysis. Scientific computation</subject><subject>Numerical linear algebra</subject><subject>Ordinary differential equations</subject><subject>Sciences and techniques of general use</subject><subject>Special functions</subject><subject>Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds</subject><issn>0044-2267</issn><issn>1521-4001</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNqFj0tPAjEUhRujiYhuXc_G5eDte2aJRNAEdOGDxE3TKa2pFoa0EIRf75Ax6M7VTU7Od24-hC4x9DAAud7p-bxHAAQGSosj1MGc4JwB4GPUAWAsJ0TIU3SW0gc0aYlpB8Grr6Je-XqR1S57twsbdfA7O8tm9boKNtvYELI6GR-CXtUxnaMTp0OyFz-3i16Gt8-Du3z8OLof9Me5oaUs8qLkM6k1c1iKkloqKRGcFo46KQTRTVABOOxsYXhljQPecJZVGDvCsdO0i3rtrol1StE6tYx-ruNWYVB7X7X3VQffBrhqgaVORgcX9cL49EuVUDBW8KZXtr2ND3b7z6p6608mf3_kLevTyn4dWB0_lZBUcjV9GKmpGDJ5U1L1RL8BLs51fg</recordid><startdate>200709</startdate><enddate>200709</enddate><creator>Litak, G.</creator><creator>Borowiec, M.</creator><creator>Syta, A.</creator><general>WILEY-VCH Verlag</general><general>WILEY‐VCH Verlag</general><general>Wiley-VCH</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>200709</creationdate><title>Vibration of generalized double well oscillators</title><author>Litak, G. ; Borowiec, M. ; Syta, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3978-895d7aa4f17693e37326538f3f7662ae37b00f1fe8c5becf05c39e4b11f251fa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>chaotic vibration</topic><topic>Duffing oscillator</topic><topic>Exact sciences and technology</topic><topic>Global analysis, analysis on manifolds</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Melnikov criterion</topic><topic>Numerical analysis</topic><topic>Numerical analysis. Scientific computation</topic><topic>Numerical linear algebra</topic><topic>Ordinary differential equations</topic><topic>Sciences and techniques of general use</topic><topic>Special functions</topic><topic>Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Litak, G.</creatorcontrib><creatorcontrib>Borowiec, M.</creatorcontrib><creatorcontrib>Syta, A.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Zeitschrift für angewandte Mathematik und Mechanik</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Litak, G.</au><au>Borowiec, M.</au><au>Syta, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Vibration of generalized double well oscillators</atitle><jtitle>Zeitschrift für angewandte Mathematik und Mechanik</jtitle><addtitle>Z. angew. Math. Mech</addtitle><date>2007-09</date><risdate>2007</risdate><volume>87</volume><issue>8-9</issue><spage>590</spage><epage>602</epage><pages>590-602</pages><issn>0044-2267</issn><eissn>1521-4001</eissn><coden>ZAMMAX</coden><abstract>We have applied the Melnikov criterion to examine a global homoclinic bifurcation and a transition to chaos in the case of the double well dynamical system with a nonlinear fractional damping term and external excitation. The usual double well Duffing potential having one negative square term and one positive quartic term has been generalized to a double well potential with a negative square term and a positive one with an arbitrary real exponent q &gt; 2. We have also used a fractional damping term with an arbitrary power p applied to velocity which enables one to cover a wide range of realistic damping factors: from dry friction p → 0 to turbulent resistance phenomena p = 2. Using perturbation methods we have found a critical forcing amplitude μc above which the system may behave chaotically. Our results show that the vibrating system is less stable in transition to chaos for smaller p satisfying an exponential scaling low. The critical amplitude μc is an exponential function of p. The analytical results have been illustrated by numerical simulations using standard nonlinear tools such as Poincare maps and the maximal Lyapunov exponent. As usual for chosen system parameters we have identified a chaotic motion above the critical Melnikov amplitude μc.</abstract><cop>Berlin</cop><pub>WILEY-VCH Verlag</pub><doi>10.1002/zamm.200610338</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0044-2267
ispartof Zeitschrift für angewandte Mathematik und Mechanik, 2007-09, Vol.87 (8-9), p.590-602
issn 0044-2267
1521-4001
language eng
recordid cdi_crossref_primary_10_1002_zamm_200610338
source Wiley Online Library Journals Frontfile Complete
subjects chaotic vibration
Duffing oscillator
Exact sciences and technology
Global analysis, analysis on manifolds
Mathematical analysis
Mathematics
Melnikov criterion
Numerical analysis
Numerical analysis. Scientific computation
Numerical linear algebra
Ordinary differential equations
Sciences and techniques of general use
Special functions
Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds
title Vibration of generalized double well oscillators
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T06%3A30%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-istex_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Vibration%20of%20generalized%20double%20well%20oscillators&rft.jtitle=Zeitschrift%20f%C3%BCr%20angewandte%20Mathematik%20und%20Mechanik&rft.au=Litak,%20G.&rft.date=2007-09&rft.volume=87&rft.issue=8-9&rft.spage=590&rft.epage=602&rft.pages=590-602&rft.issn=0044-2267&rft.eissn=1521-4001&rft.coden=ZAMMAX&rft_id=info:doi/10.1002/zamm.200610338&rft_dat=%3Cistex_cross%3Eark_67375_WNG_W6F47B93_S%3C/istex_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true