Asymptotic and discrete concepts for optimal control in radiative transfer

Optimal control problems for the radiative transfer equation and for approximate models are considered. Following the approach first discretize, then optimize, the discrete SPN approximations are for the first time derived exactly and used for the study of optimal control based on reduced order mode...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Zeitschrift für angewandte Mathematik und Mechanik 2007-05, Vol.87 (5), p.333-347
Hauptverfasser: Herty, M., Pinnau, R., Thömmes, G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 347
container_issue 5
container_start_page 333
container_title Zeitschrift für angewandte Mathematik und Mechanik
container_volume 87
creator Herty, M.
Pinnau, R.
Thömmes, G.
description Optimal control problems for the radiative transfer equation and for approximate models are considered. Following the approach first discretize, then optimize, the discrete SPN approximations are for the first time derived exactly and used for the study of optimal control based on reduced order models. Moreover, combining asymptotic analysis and the adjoint calculus yields diffusion‐type approximations for the adjoint radiative transport equation in the spirit of the approach first optimize, then discretize.
doi_str_mv 10.1002/zamm.200610316
format Article
fullrecord <record><control><sourceid>istex_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_zamm_200610316</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ark_67375_WNG_K95D6CKC_C</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3576-40f8993c35811ee2fb8c21c79f4e34cca3ab889f0229ba582e5fd91bc9f3d87d3</originalsourceid><addsrcrecordid>eNqFkEtLAzEUhYMoWKtb19m4nJrHPJJlGbVqW90ogpuQySQQnRdJ0NZfb8pIdefqci_nO_dwADjHaIYRIpdfsm1nBKEcI4rzAzDBGcFJihA-BBOE0jQhJC-OwYn3byheOaYTcD_323YIfbAKyq6GtfXK6aCh6julh-Ch6R3sh2Bb2eyOwfUNtB10srYy2A8Ng5OdN9qdgiMjG6_PfuYUPN9cP5W3yepxcVfOV4miWZHHQIZxTuPCMNaamIopglXBTappqpSksmKMG0QIr2TGiM5MzXGluKE1K2o6BbPRV7nee6eNGFxM57YCI7FrQuyaEPsmInAxAoP0SjYm5lXW_1Ks4DhFJOr4qPu0jd7-4ype5-v13x_JyFof9GbPSvcu8oIWmXh5WIglz67yclmKkn4D1Zd_zA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Asymptotic and discrete concepts for optimal control in radiative transfer</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Herty, M. ; Pinnau, R. ; Thömmes, G.</creator><creatorcontrib>Herty, M. ; Pinnau, R. ; Thömmes, G.</creatorcontrib><description>Optimal control problems for the radiative transfer equation and for approximate models are considered. Following the approach first discretize, then optimize, the discrete SPN approximations are for the first time derived exactly and used for the study of optimal control based on reduced order models. Moreover, combining asymptotic analysis and the adjoint calculus yields diffusion‐type approximations for the adjoint radiative transport equation in the spirit of the approach first optimize, then discretize.</description><identifier>ISSN: 0044-2267</identifier><identifier>EISSN: 1521-4001</identifier><identifier>DOI: 10.1002/zamm.200610316</identifier><identifier>CODEN: ZAMMAX</identifier><language>eng</language><publisher>Berlin: WILEY-VCH Verlag</publisher><subject>adjoint calculus ; Calculus of variations and optimal control ; discrete ordinates ; Exact sciences and technology ; first-order optimality ; iterative methods ; Mathematical analysis ; Mathematics ; Numerical analysis ; Numerical analysis. Scientific computation ; optimal control ; radiative transfer ; Sciences and techniques of general use ; SPN-equations</subject><ispartof>Zeitschrift für angewandte Mathematik und Mechanik, 2007-05, Vol.87 (5), p.333-347</ispartof><rights>Copyright © 2007 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2008 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3576-40f8993c35811ee2fb8c21c79f4e34cca3ab889f0229ba582e5fd91bc9f3d87d3</citedby><cites>FETCH-LOGICAL-c3576-40f8993c35811ee2fb8c21c79f4e34cca3ab889f0229ba582e5fd91bc9f3d87d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fzamm.200610316$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fzamm.200610316$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,778,782,1414,27907,27908,45557,45558</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=18791402$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Herty, M.</creatorcontrib><creatorcontrib>Pinnau, R.</creatorcontrib><creatorcontrib>Thömmes, G.</creatorcontrib><title>Asymptotic and discrete concepts for optimal control in radiative transfer</title><title>Zeitschrift für angewandte Mathematik und Mechanik</title><addtitle>Z. angew. Math. Mech</addtitle><description>Optimal control problems for the radiative transfer equation and for approximate models are considered. Following the approach first discretize, then optimize, the discrete SPN approximations are for the first time derived exactly and used for the study of optimal control based on reduced order models. Moreover, combining asymptotic analysis and the adjoint calculus yields diffusion‐type approximations for the adjoint radiative transport equation in the spirit of the approach first optimize, then discretize.</description><subject>adjoint calculus</subject><subject>Calculus of variations and optimal control</subject><subject>discrete ordinates</subject><subject>Exact sciences and technology</subject><subject>first-order optimality</subject><subject>iterative methods</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Numerical analysis</subject><subject>Numerical analysis. Scientific computation</subject><subject>optimal control</subject><subject>radiative transfer</subject><subject>Sciences and techniques of general use</subject><subject>SPN-equations</subject><issn>0044-2267</issn><issn>1521-4001</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNqFkEtLAzEUhYMoWKtb19m4nJrHPJJlGbVqW90ogpuQySQQnRdJ0NZfb8pIdefqci_nO_dwADjHaIYRIpdfsm1nBKEcI4rzAzDBGcFJihA-BBOE0jQhJC-OwYn3byheOaYTcD_323YIfbAKyq6GtfXK6aCh6julh-Ch6R3sh2Bb2eyOwfUNtB10srYy2A8Ng5OdN9qdgiMjG6_PfuYUPN9cP5W3yepxcVfOV4miWZHHQIZxTuPCMNaamIopglXBTappqpSksmKMG0QIr2TGiM5MzXGluKE1K2o6BbPRV7nee6eNGFxM57YCI7FrQuyaEPsmInAxAoP0SjYm5lXW_1Ks4DhFJOr4qPu0jd7-4ype5-v13x_JyFof9GbPSvcu8oIWmXh5WIglz67yclmKkn4D1Zd_zA</recordid><startdate>200705</startdate><enddate>200705</enddate><creator>Herty, M.</creator><creator>Pinnau, R.</creator><creator>Thömmes, G.</creator><general>WILEY-VCH Verlag</general><general>WILEY‐VCH Verlag</general><general>Wiley-VCH</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>200705</creationdate><title>Asymptotic and discrete concepts for optimal control in radiative transfer</title><author>Herty, M. ; Pinnau, R. ; Thömmes, G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3576-40f8993c35811ee2fb8c21c79f4e34cca3ab889f0229ba582e5fd91bc9f3d87d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>adjoint calculus</topic><topic>Calculus of variations and optimal control</topic><topic>discrete ordinates</topic><topic>Exact sciences and technology</topic><topic>first-order optimality</topic><topic>iterative methods</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Numerical analysis</topic><topic>Numerical analysis. Scientific computation</topic><topic>optimal control</topic><topic>radiative transfer</topic><topic>Sciences and techniques of general use</topic><topic>SPN-equations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Herty, M.</creatorcontrib><creatorcontrib>Pinnau, R.</creatorcontrib><creatorcontrib>Thömmes, G.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Zeitschrift für angewandte Mathematik und Mechanik</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Herty, M.</au><au>Pinnau, R.</au><au>Thömmes, G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Asymptotic and discrete concepts for optimal control in radiative transfer</atitle><jtitle>Zeitschrift für angewandte Mathematik und Mechanik</jtitle><addtitle>Z. angew. Math. Mech</addtitle><date>2007-05</date><risdate>2007</risdate><volume>87</volume><issue>5</issue><spage>333</spage><epage>347</epage><pages>333-347</pages><issn>0044-2267</issn><eissn>1521-4001</eissn><coden>ZAMMAX</coden><abstract>Optimal control problems for the radiative transfer equation and for approximate models are considered. Following the approach first discretize, then optimize, the discrete SPN approximations are for the first time derived exactly and used for the study of optimal control based on reduced order models. Moreover, combining asymptotic analysis and the adjoint calculus yields diffusion‐type approximations for the adjoint radiative transport equation in the spirit of the approach first optimize, then discretize.</abstract><cop>Berlin</cop><pub>WILEY-VCH Verlag</pub><doi>10.1002/zamm.200610316</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0044-2267
ispartof Zeitschrift für angewandte Mathematik und Mechanik, 2007-05, Vol.87 (5), p.333-347
issn 0044-2267
1521-4001
language eng
recordid cdi_crossref_primary_10_1002_zamm_200610316
source Wiley Online Library Journals Frontfile Complete
subjects adjoint calculus
Calculus of variations and optimal control
discrete ordinates
Exact sciences and technology
first-order optimality
iterative methods
Mathematical analysis
Mathematics
Numerical analysis
Numerical analysis. Scientific computation
optimal control
radiative transfer
Sciences and techniques of general use
SPN-equations
title Asymptotic and discrete concepts for optimal control in radiative transfer
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T10%3A36%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-istex_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Asymptotic%20and%20discrete%20concepts%20for%20optimal%20control%20in%20radiative%20transfer&rft.jtitle=Zeitschrift%20f%C3%BCr%20angewandte%20Mathematik%20und%20Mechanik&rft.au=Herty,%20M.&rft.date=2007-05&rft.volume=87&rft.issue=5&rft.spage=333&rft.epage=347&rft.pages=333-347&rft.issn=0044-2267&rft.eissn=1521-4001&rft.coden=ZAMMAX&rft_id=info:doi/10.1002/zamm.200610316&rft_dat=%3Cistex_cross%3Eark_67375_WNG_K95D6CKC_C%3C/istex_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true