Asymptotic and discrete concepts for optimal control in radiative transfer
Optimal control problems for the radiative transfer equation and for approximate models are considered. Following the approach first discretize, then optimize, the discrete SPN approximations are for the first time derived exactly and used for the study of optimal control based on reduced order mode...
Gespeichert in:
Veröffentlicht in: | Zeitschrift für angewandte Mathematik und Mechanik 2007-05, Vol.87 (5), p.333-347 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 347 |
---|---|
container_issue | 5 |
container_start_page | 333 |
container_title | Zeitschrift für angewandte Mathematik und Mechanik |
container_volume | 87 |
creator | Herty, M. Pinnau, R. Thömmes, G. |
description | Optimal control problems for the radiative transfer equation and for approximate models are considered. Following the approach first discretize, then optimize, the discrete SPN approximations are for the first time derived exactly and used for the study of optimal control based on reduced order models. Moreover, combining asymptotic analysis and the adjoint calculus yields diffusion‐type approximations for the adjoint radiative transport equation in the spirit of the approach first optimize, then discretize. |
doi_str_mv | 10.1002/zamm.200610316 |
format | Article |
fullrecord | <record><control><sourceid>istex_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_zamm_200610316</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ark_67375_WNG_K95D6CKC_C</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3576-40f8993c35811ee2fb8c21c79f4e34cca3ab889f0229ba582e5fd91bc9f3d87d3</originalsourceid><addsrcrecordid>eNqFkEtLAzEUhYMoWKtb19m4nJrHPJJlGbVqW90ogpuQySQQnRdJ0NZfb8pIdefqci_nO_dwADjHaIYRIpdfsm1nBKEcI4rzAzDBGcFJihA-BBOE0jQhJC-OwYn3byheOaYTcD_323YIfbAKyq6GtfXK6aCh6julh-Ch6R3sh2Bb2eyOwfUNtB10srYy2A8Ng5OdN9qdgiMjG6_PfuYUPN9cP5W3yepxcVfOV4miWZHHQIZxTuPCMNaamIopglXBTappqpSksmKMG0QIr2TGiM5MzXGluKE1K2o6BbPRV7nee6eNGFxM57YCI7FrQuyaEPsmInAxAoP0SjYm5lXW_1Ks4DhFJOr4qPu0jd7-4ype5-v13x_JyFof9GbPSvcu8oIWmXh5WIglz67yclmKkn4D1Zd_zA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Asymptotic and discrete concepts for optimal control in radiative transfer</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Herty, M. ; Pinnau, R. ; Thömmes, G.</creator><creatorcontrib>Herty, M. ; Pinnau, R. ; Thömmes, G.</creatorcontrib><description>Optimal control problems for the radiative transfer equation and for approximate models are considered. Following the approach first discretize, then optimize, the discrete SPN approximations are for the first time derived exactly and used for the study of optimal control based on reduced order models. Moreover, combining asymptotic analysis and the adjoint calculus yields diffusion‐type approximations for the adjoint radiative transport equation in the spirit of the approach first optimize, then discretize.</description><identifier>ISSN: 0044-2267</identifier><identifier>EISSN: 1521-4001</identifier><identifier>DOI: 10.1002/zamm.200610316</identifier><identifier>CODEN: ZAMMAX</identifier><language>eng</language><publisher>Berlin: WILEY-VCH Verlag</publisher><subject>adjoint calculus ; Calculus of variations and optimal control ; discrete ordinates ; Exact sciences and technology ; first-order optimality ; iterative methods ; Mathematical analysis ; Mathematics ; Numerical analysis ; Numerical analysis. Scientific computation ; optimal control ; radiative transfer ; Sciences and techniques of general use ; SPN-equations</subject><ispartof>Zeitschrift für angewandte Mathematik und Mechanik, 2007-05, Vol.87 (5), p.333-347</ispartof><rights>Copyright © 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>2008 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3576-40f8993c35811ee2fb8c21c79f4e34cca3ab889f0229ba582e5fd91bc9f3d87d3</citedby><cites>FETCH-LOGICAL-c3576-40f8993c35811ee2fb8c21c79f4e34cca3ab889f0229ba582e5fd91bc9f3d87d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fzamm.200610316$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fzamm.200610316$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,778,782,1414,27907,27908,45557,45558</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18791402$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Herty, M.</creatorcontrib><creatorcontrib>Pinnau, R.</creatorcontrib><creatorcontrib>Thömmes, G.</creatorcontrib><title>Asymptotic and discrete concepts for optimal control in radiative transfer</title><title>Zeitschrift für angewandte Mathematik und Mechanik</title><addtitle>Z. angew. Math. Mech</addtitle><description>Optimal control problems for the radiative transfer equation and for approximate models are considered. Following the approach first discretize, then optimize, the discrete SPN approximations are for the first time derived exactly and used for the study of optimal control based on reduced order models. Moreover, combining asymptotic analysis and the adjoint calculus yields diffusion‐type approximations for the adjoint radiative transport equation in the spirit of the approach first optimize, then discretize.</description><subject>adjoint calculus</subject><subject>Calculus of variations and optimal control</subject><subject>discrete ordinates</subject><subject>Exact sciences and technology</subject><subject>first-order optimality</subject><subject>iterative methods</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Numerical analysis</subject><subject>Numerical analysis. Scientific computation</subject><subject>optimal control</subject><subject>radiative transfer</subject><subject>Sciences and techniques of general use</subject><subject>SPN-equations</subject><issn>0044-2267</issn><issn>1521-4001</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNqFkEtLAzEUhYMoWKtb19m4nJrHPJJlGbVqW90ogpuQySQQnRdJ0NZfb8pIdefqci_nO_dwADjHaIYRIpdfsm1nBKEcI4rzAzDBGcFJihA-BBOE0jQhJC-OwYn3byheOaYTcD_323YIfbAKyq6GtfXK6aCh6julh-Ch6R3sh2Bb2eyOwfUNtB10srYy2A8Ng5OdN9qdgiMjG6_PfuYUPN9cP5W3yepxcVfOV4miWZHHQIZxTuPCMNaamIopglXBTappqpSksmKMG0QIr2TGiM5MzXGluKE1K2o6BbPRV7nee6eNGFxM57YCI7FrQuyaEPsmInAxAoP0SjYm5lXW_1Ks4DhFJOr4qPu0jd7-4ype5-v13x_JyFof9GbPSvcu8oIWmXh5WIglz67yclmKkn4D1Zd_zA</recordid><startdate>200705</startdate><enddate>200705</enddate><creator>Herty, M.</creator><creator>Pinnau, R.</creator><creator>Thömmes, G.</creator><general>WILEY-VCH Verlag</general><general>WILEY‐VCH Verlag</general><general>Wiley-VCH</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>200705</creationdate><title>Asymptotic and discrete concepts for optimal control in radiative transfer</title><author>Herty, M. ; Pinnau, R. ; Thömmes, G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3576-40f8993c35811ee2fb8c21c79f4e34cca3ab889f0229ba582e5fd91bc9f3d87d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>adjoint calculus</topic><topic>Calculus of variations and optimal control</topic><topic>discrete ordinates</topic><topic>Exact sciences and technology</topic><topic>first-order optimality</topic><topic>iterative methods</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Numerical analysis</topic><topic>Numerical analysis. Scientific computation</topic><topic>optimal control</topic><topic>radiative transfer</topic><topic>Sciences and techniques of general use</topic><topic>SPN-equations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Herty, M.</creatorcontrib><creatorcontrib>Pinnau, R.</creatorcontrib><creatorcontrib>Thömmes, G.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Zeitschrift für angewandte Mathematik und Mechanik</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Herty, M.</au><au>Pinnau, R.</au><au>Thömmes, G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Asymptotic and discrete concepts for optimal control in radiative transfer</atitle><jtitle>Zeitschrift für angewandte Mathematik und Mechanik</jtitle><addtitle>Z. angew. Math. Mech</addtitle><date>2007-05</date><risdate>2007</risdate><volume>87</volume><issue>5</issue><spage>333</spage><epage>347</epage><pages>333-347</pages><issn>0044-2267</issn><eissn>1521-4001</eissn><coden>ZAMMAX</coden><abstract>Optimal control problems for the radiative transfer equation and for approximate models are considered. Following the approach first discretize, then optimize, the discrete SPN approximations are for the first time derived exactly and used for the study of optimal control based on reduced order models. Moreover, combining asymptotic analysis and the adjoint calculus yields diffusion‐type approximations for the adjoint radiative transport equation in the spirit of the approach first optimize, then discretize.</abstract><cop>Berlin</cop><pub>WILEY-VCH Verlag</pub><doi>10.1002/zamm.200610316</doi><tpages>15</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0044-2267 |
ispartof | Zeitschrift für angewandte Mathematik und Mechanik, 2007-05, Vol.87 (5), p.333-347 |
issn | 0044-2267 1521-4001 |
language | eng |
recordid | cdi_crossref_primary_10_1002_zamm_200610316 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | adjoint calculus Calculus of variations and optimal control discrete ordinates Exact sciences and technology first-order optimality iterative methods Mathematical analysis Mathematics Numerical analysis Numerical analysis. Scientific computation optimal control radiative transfer Sciences and techniques of general use SPN-equations |
title | Asymptotic and discrete concepts for optimal control in radiative transfer |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T10%3A36%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-istex_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Asymptotic%20and%20discrete%20concepts%20for%20optimal%20control%20in%20radiative%20transfer&rft.jtitle=Zeitschrift%20f%C3%BCr%20angewandte%20Mathematik%20und%20Mechanik&rft.au=Herty,%20M.&rft.date=2007-05&rft.volume=87&rft.issue=5&rft.spage=333&rft.epage=347&rft.pages=333-347&rft.issn=0044-2267&rft.eissn=1521-4001&rft.coden=ZAMMAX&rft_id=info:doi/10.1002/zamm.200610316&rft_dat=%3Cistex_cross%3Eark_67375_WNG_K95D6CKC_C%3C/istex_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |