Cs 3 OsH 9 ‐ Synthese, Struktur und magnetische Eigenschaften

Cs 3 OsH 9 ‐ Synthesis, Structure, and Magnetic Properties Cs 3 OsD 9 was synthesized by the reaction of cesium deuteride with osmium powder at 870 K and a deuterium pressure above 1500 bar. Elastic neutron diffraction experiments on a powder sample at room temperature led to an atomic arrangement n...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Zeitschrift für anorganische und allgemeine Chemie (1950) 2005-05, Vol.631 (6-7), p.1060-1064
Hauptverfasser: Auffermann, G., Bronger, Welf, Müller, P., Roth, G., Schilder, H., Sommer, T.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Cs 3 OsH 9 ‐ Synthesis, Structure, and Magnetic Properties Cs 3 OsD 9 was synthesized by the reaction of cesium deuteride with osmium powder at 870 K and a deuterium pressure above 1500 bar. Elastic neutron diffraction experiments on a powder sample at room temperature led to an atomic arrangement nearly describable in a cubic unit cell ( Pm 3 m ; a = 6.128(2) Å, Z = 1). According to the formula Cs 3 D[OsD 8 ] the structure corresponds to that of the perovskite type. The coordination polyhedron of the deuterium atoms surrounding each osmium atom can be described crystallographically as a statistical occupation of two 24‐fold positions with deuterium. A detailed investigation on the gaussian profiles of the neutron diffraction pattern leads to the result that the compound crystallizes in a tetragonal unit cell with a = 8.602(1) Å, c = 12.250(1) Å and Z = 4. Below a phase transition at 110 K an orthorhombic unit cell was found with a = 8.6983(4) Å, b = 8.6046(4) Å, c = 11.9437(6) Å and Z = 4. A provisional structure model is presented. Magnetic susceptibility measurements in the temperature range between 1.8 and 400 K reveal a weak paramagnetism. Quantum mechanical calculations confirm the experimental result and show in detail that spin momentum and orbital momentum cancel each other nearly complete with regard to the ground state.
ISSN:0044-2313
1521-3749
DOI:10.1002/zaac.200500046