Upgrading CO 2 into acetate on Bi 2 O 3 @carbon felt integrated electrode via coupling electrocatalysis with microbial synthesis

Upgrading of atmospheric CO 2 into high‐value‐added acetate using renewable electricity via electrocatalysis solely remains a great challenge. Here, inspired by microbial synthesis via biocatalysts, we present a coupled system to produce acetate from CO 2 by bridging inorganic electrocatalysis with...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SusMat (Online) 2023-04, Vol.3 (2), p.235-247
Hauptverfasser: Liu, Xiaojing, Zhang, Kang, Sun, Yidan, Zhang, Shukang, Qiu, Zhenyu, Song, Tianshun, Xie, Jingjing, Wu, Yuping, Chen, Yuhui
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 247
container_issue 2
container_start_page 235
container_title SusMat (Online)
container_volume 3
creator Liu, Xiaojing
Zhang, Kang
Sun, Yidan
Zhang, Shukang
Qiu, Zhenyu
Song, Tianshun
Xie, Jingjing
Wu, Yuping
Chen, Yuhui
description Upgrading of atmospheric CO 2 into high‐value‐added acetate using renewable electricity via electrocatalysis solely remains a great challenge. Here, inspired by microbial synthesis via biocatalysts, we present a coupled system to produce acetate from CO 2 by bridging inorganic electrocatalysis with microbial synthesis through formate intermediates. A 3D Bi 2 O 3 @CF integrated electrode with an ice‐sugar gourd shape was fabricated via a straightforward hydrothermal synthesis strategy, wherein Bi 2 O 3 microspheres were decorated on carbon fibers. This ice‐sugar gourd‐shaped architecture endows electrodes with multiple structural advantages, including synergistic contribution, high mass transport capability, high structural stability, and large surface area. Consequently, the resultant Bi 2 O 3 @CF exhibited a maximum Faradic efficiency of 92.4% at −1.23 V versus Ag/AgCl for formate generation in 0.5 M KHCO 3 , exceeding that of Bi 2 O 3 /CF prepared using a conventional electrode preparation strategy. Benefiting from the high formate selectivity, unique architecture, and good biocompatibility, the Bi 2 O 3 @CF electrode attached with enriched CO 2 ‐fixing electroautotrophs served as a biocathode. As a result, a considerable acetate yield rate of 0.269 ± 0.009 g L −1  day −1 (a total acetate yield of 3.77 ± 0.12 g L −1 during 14‐day operation) was achieved in the electrochemical–microbial system equipped with Bi 2 O 3 @CF.
doi_str_mv 10.1002/sus2.117
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1002_sus2_117</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1002_sus2_117</sourcerecordid><originalsourceid>FETCH-LOGICAL-c727-14b5e9a52ed2b05ac632125086ddb924f7507430b504899950a1a2ba9401ac03</originalsourceid><addsrcrecordid>eNpNkM1OwzAQhC0EElWpxCPskUuK7dhJfQMi_qRKPQDnaO04rVGaRLYL6o1HxxE9cNrVt7Mz0hByzeiSUcpvwyHwJWPlGZnxQvFMSMnP_-2XZBHCJ01SyXJWiBn5-Ri3HhvXb6HaAAfXxwHQ2IjRwtDDg0twAzncGfQ6gdZ2cVLZ9BZtA7azJvqhsfDlEMxwGLvJ7IQNRuyOwQX4dnEHe2f8oB12EI593Nl0uCIXLXbBLk5zTt6eHt-rl2y9eX6t7teZKXmZMaGlVSi5bbimEk2Rc8YlXRVNoxUXbSlpKXKqJRUrpZSkyJBrVIIyNDSfk5s_15QfgrdtPXq3R3-sGa2n6uqpujpVl_8C6yxhiw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Upgrading CO 2 into acetate on Bi 2 O 3 @carbon felt integrated electrode via coupling electrocatalysis with microbial synthesis</title><source>Wiley Online Library Open Access</source><source>DOAJ Directory of Open Access Journals</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Liu, Xiaojing ; Zhang, Kang ; Sun, Yidan ; Zhang, Shukang ; Qiu, Zhenyu ; Song, Tianshun ; Xie, Jingjing ; Wu, Yuping ; Chen, Yuhui</creator><creatorcontrib>Liu, Xiaojing ; Zhang, Kang ; Sun, Yidan ; Zhang, Shukang ; Qiu, Zhenyu ; Song, Tianshun ; Xie, Jingjing ; Wu, Yuping ; Chen, Yuhui</creatorcontrib><description>Upgrading of atmospheric CO 2 into high‐value‐added acetate using renewable electricity via electrocatalysis solely remains a great challenge. Here, inspired by microbial synthesis via biocatalysts, we present a coupled system to produce acetate from CO 2 by bridging inorganic electrocatalysis with microbial synthesis through formate intermediates. A 3D Bi 2 O 3 @CF integrated electrode with an ice‐sugar gourd shape was fabricated via a straightforward hydrothermal synthesis strategy, wherein Bi 2 O 3 microspheres were decorated on carbon fibers. This ice‐sugar gourd‐shaped architecture endows electrodes with multiple structural advantages, including synergistic contribution, high mass transport capability, high structural stability, and large surface area. Consequently, the resultant Bi 2 O 3 @CF exhibited a maximum Faradic efficiency of 92.4% at −1.23 V versus Ag/AgCl for formate generation in 0.5 M KHCO 3 , exceeding that of Bi 2 O 3 /CF prepared using a conventional electrode preparation strategy. Benefiting from the high formate selectivity, unique architecture, and good biocompatibility, the Bi 2 O 3 @CF electrode attached with enriched CO 2 ‐fixing electroautotrophs served as a biocathode. As a result, a considerable acetate yield rate of 0.269 ± 0.009 g L −1  day −1 (a total acetate yield of 3.77 ± 0.12 g L −1 during 14‐day operation) was achieved in the electrochemical–microbial system equipped with Bi 2 O 3 @CF.</description><identifier>ISSN: 2692-4552</identifier><identifier>EISSN: 2692-4552</identifier><identifier>DOI: 10.1002/sus2.117</identifier><language>eng</language><ispartof>SusMat (Online), 2023-04, Vol.3 (2), p.235-247</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c727-14b5e9a52ed2b05ac632125086ddb924f7507430b504899950a1a2ba9401ac03</citedby><cites>FETCH-LOGICAL-c727-14b5e9a52ed2b05ac632125086ddb924f7507430b504899950a1a2ba9401ac03</cites><orcidid>0000-0002-3498-0057</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,27901,27902</link.rule.ids></links><search><creatorcontrib>Liu, Xiaojing</creatorcontrib><creatorcontrib>Zhang, Kang</creatorcontrib><creatorcontrib>Sun, Yidan</creatorcontrib><creatorcontrib>Zhang, Shukang</creatorcontrib><creatorcontrib>Qiu, Zhenyu</creatorcontrib><creatorcontrib>Song, Tianshun</creatorcontrib><creatorcontrib>Xie, Jingjing</creatorcontrib><creatorcontrib>Wu, Yuping</creatorcontrib><creatorcontrib>Chen, Yuhui</creatorcontrib><title>Upgrading CO 2 into acetate on Bi 2 O 3 @carbon felt integrated electrode via coupling electrocatalysis with microbial synthesis</title><title>SusMat (Online)</title><description>Upgrading of atmospheric CO 2 into high‐value‐added acetate using renewable electricity via electrocatalysis solely remains a great challenge. Here, inspired by microbial synthesis via biocatalysts, we present a coupled system to produce acetate from CO 2 by bridging inorganic electrocatalysis with microbial synthesis through formate intermediates. A 3D Bi 2 O 3 @CF integrated electrode with an ice‐sugar gourd shape was fabricated via a straightforward hydrothermal synthesis strategy, wherein Bi 2 O 3 microspheres were decorated on carbon fibers. This ice‐sugar gourd‐shaped architecture endows electrodes with multiple structural advantages, including synergistic contribution, high mass transport capability, high structural stability, and large surface area. Consequently, the resultant Bi 2 O 3 @CF exhibited a maximum Faradic efficiency of 92.4% at −1.23 V versus Ag/AgCl for formate generation in 0.5 M KHCO 3 , exceeding that of Bi 2 O 3 /CF prepared using a conventional electrode preparation strategy. Benefiting from the high formate selectivity, unique architecture, and good biocompatibility, the Bi 2 O 3 @CF electrode attached with enriched CO 2 ‐fixing electroautotrophs served as a biocathode. As a result, a considerable acetate yield rate of 0.269 ± 0.009 g L −1  day −1 (a total acetate yield of 3.77 ± 0.12 g L −1 during 14‐day operation) was achieved in the electrochemical–microbial system equipped with Bi 2 O 3 @CF.</description><issn>2692-4552</issn><issn>2692-4552</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpNkM1OwzAQhC0EElWpxCPskUuK7dhJfQMi_qRKPQDnaO04rVGaRLYL6o1HxxE9cNrVt7Mz0hByzeiSUcpvwyHwJWPlGZnxQvFMSMnP_-2XZBHCJ01SyXJWiBn5-Ri3HhvXb6HaAAfXxwHQ2IjRwtDDg0twAzncGfQ6gdZ2cVLZ9BZtA7azJvqhsfDlEMxwGLvJ7IQNRuyOwQX4dnEHe2f8oB12EI593Nl0uCIXLXbBLk5zTt6eHt-rl2y9eX6t7teZKXmZMaGlVSi5bbimEk2Rc8YlXRVNoxUXbSlpKXKqJRUrpZSkyJBrVIIyNDSfk5s_15QfgrdtPXq3R3-sGa2n6uqpujpVl_8C6yxhiw</recordid><startdate>202304</startdate><enddate>202304</enddate><creator>Liu, Xiaojing</creator><creator>Zhang, Kang</creator><creator>Sun, Yidan</creator><creator>Zhang, Shukang</creator><creator>Qiu, Zhenyu</creator><creator>Song, Tianshun</creator><creator>Xie, Jingjing</creator><creator>Wu, Yuping</creator><creator>Chen, Yuhui</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-3498-0057</orcidid></search><sort><creationdate>202304</creationdate><title>Upgrading CO 2 into acetate on Bi 2 O 3 @carbon felt integrated electrode via coupling electrocatalysis with microbial synthesis</title><author>Liu, Xiaojing ; Zhang, Kang ; Sun, Yidan ; Zhang, Shukang ; Qiu, Zhenyu ; Song, Tianshun ; Xie, Jingjing ; Wu, Yuping ; Chen, Yuhui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c727-14b5e9a52ed2b05ac632125086ddb924f7507430b504899950a1a2ba9401ac03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Xiaojing</creatorcontrib><creatorcontrib>Zhang, Kang</creatorcontrib><creatorcontrib>Sun, Yidan</creatorcontrib><creatorcontrib>Zhang, Shukang</creatorcontrib><creatorcontrib>Qiu, Zhenyu</creatorcontrib><creatorcontrib>Song, Tianshun</creatorcontrib><creatorcontrib>Xie, Jingjing</creatorcontrib><creatorcontrib>Wu, Yuping</creatorcontrib><creatorcontrib>Chen, Yuhui</creatorcontrib><collection>CrossRef</collection><jtitle>SusMat (Online)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Xiaojing</au><au>Zhang, Kang</au><au>Sun, Yidan</au><au>Zhang, Shukang</au><au>Qiu, Zhenyu</au><au>Song, Tianshun</au><au>Xie, Jingjing</au><au>Wu, Yuping</au><au>Chen, Yuhui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Upgrading CO 2 into acetate on Bi 2 O 3 @carbon felt integrated electrode via coupling electrocatalysis with microbial synthesis</atitle><jtitle>SusMat (Online)</jtitle><date>2023-04</date><risdate>2023</risdate><volume>3</volume><issue>2</issue><spage>235</spage><epage>247</epage><pages>235-247</pages><issn>2692-4552</issn><eissn>2692-4552</eissn><abstract>Upgrading of atmospheric CO 2 into high‐value‐added acetate using renewable electricity via electrocatalysis solely remains a great challenge. Here, inspired by microbial synthesis via biocatalysts, we present a coupled system to produce acetate from CO 2 by bridging inorganic electrocatalysis with microbial synthesis through formate intermediates. A 3D Bi 2 O 3 @CF integrated electrode with an ice‐sugar gourd shape was fabricated via a straightforward hydrothermal synthesis strategy, wherein Bi 2 O 3 microspheres were decorated on carbon fibers. This ice‐sugar gourd‐shaped architecture endows electrodes with multiple structural advantages, including synergistic contribution, high mass transport capability, high structural stability, and large surface area. Consequently, the resultant Bi 2 O 3 @CF exhibited a maximum Faradic efficiency of 92.4% at −1.23 V versus Ag/AgCl for formate generation in 0.5 M KHCO 3 , exceeding that of Bi 2 O 3 /CF prepared using a conventional electrode preparation strategy. Benefiting from the high formate selectivity, unique architecture, and good biocompatibility, the Bi 2 O 3 @CF electrode attached with enriched CO 2 ‐fixing electroautotrophs served as a biocathode. As a result, a considerable acetate yield rate of 0.269 ± 0.009 g L −1  day −1 (a total acetate yield of 3.77 ± 0.12 g L −1 during 14‐day operation) was achieved in the electrochemical–microbial system equipped with Bi 2 O 3 @CF.</abstract><doi>10.1002/sus2.117</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-3498-0057</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2692-4552
ispartof SusMat (Online), 2023-04, Vol.3 (2), p.235-247
issn 2692-4552
2692-4552
language eng
recordid cdi_crossref_primary_10_1002_sus2_117
source Wiley Online Library Open Access; DOAJ Directory of Open Access Journals; Wiley Online Library Journals Frontfile Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
title Upgrading CO 2 into acetate on Bi 2 O 3 @carbon felt integrated electrode via coupling electrocatalysis with microbial synthesis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T23%3A06%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Upgrading%20CO%202%20into%20acetate%20on%20Bi%202%20O%203%20@carbon%20felt%20integrated%20electrode%20via%20coupling%20electrocatalysis%20with%20microbial%20synthesis&rft.jtitle=SusMat%20(Online)&rft.au=Liu,%20Xiaojing&rft.date=2023-04&rft.volume=3&rft.issue=2&rft.spage=235&rft.epage=247&rft.pages=235-247&rft.issn=2692-4552&rft.eissn=2692-4552&rft_id=info:doi/10.1002/sus2.117&rft_dat=%3Ccrossref%3E10_1002_sus2_117%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true