Discovery of Nonsteroidal Anti‐Inflammatory Drug and Anticancer Drug Enhancing Reprogramming and Induced Pluripotent Stem Cell Generation
Recent breakthroughs in creating induced pluripotent stem cells (iPSCs) provide alternative means to obtain embryonic stem‐like cells without destroying embryos by introducing four reprogramming factors (Oct3/4, Sox2, and Klf4/c‐Myc or Nanog/Lin28) into somatic cells. iPSCs are versatile tools for i...
Gespeichert in:
Veröffentlicht in: | Stem cells (Dayton, Ohio) Ohio), 2011-10, Vol.29 (10), p.1528-1536 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1536 |
---|---|
container_issue | 10 |
container_start_page | 1528 |
container_title | Stem cells (Dayton, Ohio) |
container_volume | 29 |
creator | Yang, Chao‐Shun Lopez, Claudia G. Rana, Tariq M. |
description | Recent breakthroughs in creating induced pluripotent stem cells (iPSCs) provide alternative means to obtain embryonic stem‐like cells without destroying embryos by introducing four reprogramming factors (Oct3/4, Sox2, and Klf4/c‐Myc or Nanog/Lin28) into somatic cells. iPSCs are versatile tools for investigating early developmental processes and could become sources of tissues or cells for regenerative therapies. Here, for the first time, we describe a strategy to analyze genomics datasets of mouse embryonic fibroblasts (MEFs) and embryonic stem cells to identify genes constituting barriers to iPSC reprogramming. We further show that computational chemical biology combined with genomics analysis can be used to identify small molecules regulating reprogramming. Specific downregulation by small interfering RNAs (siRNAs) of several key MEF‐specific genes encoding proteins with catalytic or regulatory functions, including WISP1, PRRX1, HMGA2, NFIX, PRKG2, COX2, and TGFβ3, greatly increased reprogramming efficiency. Based on this rationale, we screened only 17 small molecules in reprogramming assays and discovered that the nonsteroidal anti‐inflammatory drug Nabumetone and the anticancer drug 4‐hydroxytamoxifen can generate iPSCs without Sox2. Nabumetone could also produce iPSCs in the absence of c‐Myc or Sox2 without compromising self‐renewal and pluripotency of derived iPSCs. In summary, we report a new concept of combining genomics and computational chemical biology to identify new drugs useful for iPSC generation. This hypothesis‐driven approach provides an alternative to shot‐gun screening and accelerates understanding of molecular mechanisms underlying iPSC induction. STEM CELLS 2011;29:1528–1536 |
doi_str_mv | 10.1002/stem.717 |
format | Article |
fullrecord | <record><control><sourceid>wiley_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_stem_717</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>STEM717</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4207-98d2544b1503f7033e160576779cb8765c0d95d197e57035b753df0bb6d4f2073</originalsourceid><addsrcrecordid>eNp1kLtOwzAUhi0EouUi8QTII0uKncSxPVZtKZXKRbTMkWM7JSixIycFdWNn4Rl5EhwCbEzHx-c7n45-AM4wGmGEwsum1dWIYroHhpjEPIg5Zvv-jZIkIIjzAThqmmeEcEwYOwSDEDPOEhYPwfu0aKR90W4HbQ5vrfEqZwslSjg2bfH59rEweSmqSrTWM1O33UBh1PdQCiO16_9m5sl3hdnAB107u3F-pes6dmHUVmoF78utK2rbatPClb8YTnRZwrk22om2sOYEHOSibPTpTz0Gj1ez9eQ6WN7NF5PxMpBxiGjAmQpJHGeYoCinKIo0ThChCaVcZowmRCLFicKcauLHJKMkUjnKskTFuRdEx-Ci90pnm8bpPK1dUQm3SzFKuzzTLs_U5-nR8x6tt1ml1R_4G6AHgh54LUq9-1eUrtazm074BVHigjw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Discovery of Nonsteroidal Anti‐Inflammatory Drug and Anticancer Drug Enhancing Reprogramming and Induced Pluripotent Stem Cell Generation</title><source>Oxford University Press Journals All Titles (1996-Current)</source><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Yang, Chao‐Shun ; Lopez, Claudia G. ; Rana, Tariq M.</creator><creatorcontrib>Yang, Chao‐Shun ; Lopez, Claudia G. ; Rana, Tariq M.</creatorcontrib><description>Recent breakthroughs in creating induced pluripotent stem cells (iPSCs) provide alternative means to obtain embryonic stem‐like cells without destroying embryos by introducing four reprogramming factors (Oct3/4, Sox2, and Klf4/c‐Myc or Nanog/Lin28) into somatic cells. iPSCs are versatile tools for investigating early developmental processes and could become sources of tissues or cells for regenerative therapies. Here, for the first time, we describe a strategy to analyze genomics datasets of mouse embryonic fibroblasts (MEFs) and embryonic stem cells to identify genes constituting barriers to iPSC reprogramming. We further show that computational chemical biology combined with genomics analysis can be used to identify small molecules regulating reprogramming. Specific downregulation by small interfering RNAs (siRNAs) of several key MEF‐specific genes encoding proteins with catalytic or regulatory functions, including WISP1, PRRX1, HMGA2, NFIX, PRKG2, COX2, and TGFβ3, greatly increased reprogramming efficiency. Based on this rationale, we screened only 17 small molecules in reprogramming assays and discovered that the nonsteroidal anti‐inflammatory drug Nabumetone and the anticancer drug 4‐hydroxytamoxifen can generate iPSCs without Sox2. Nabumetone could also produce iPSCs in the absence of c‐Myc or Sox2 without compromising self‐renewal and pluripotency of derived iPSCs. In summary, we report a new concept of combining genomics and computational chemical biology to identify new drugs useful for iPSC generation. This hypothesis‐driven approach provides an alternative to shot‐gun screening and accelerates understanding of molecular mechanisms underlying iPSC induction. STEM CELLS 2011;29:1528–1536</description><identifier>ISSN: 1066-5099</identifier><identifier>EISSN: 1549-4918</identifier><identifier>DOI: 10.1002/stem.717</identifier><identifier>PMID: 21898684</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>4‐Hydroxytamoxifen ; Animals ; Anti-Inflammatory Agents, Non-Steroidal - pharmacology ; Antineoplastic Agents - pharmacology ; Butanones - pharmacology ; CCN Intercellular Signaling Proteins - genetics ; CCN Intercellular Signaling Proteins - metabolism ; Computational Biology ; Cyclooxygenase 2 - genetics ; Cyclooxygenase 2 - metabolism ; c‐Myc ; Drug Discovery ; Embryonic Stem Cells - cytology ; Embryonic Stem Cells - drug effects ; Female ; Fibroblasts - cytology ; Fibroblasts - drug effects ; Fluorescent Antibody Technique ; Gene Silencing ; Genetic Vectors - genetics ; Genetic Vectors - metabolism ; Induced pluripotent stem cell ; Induced Pluripotent Stem Cells - cytology ; Induced Pluripotent Stem Cells - drug effects ; Mice ; Mice, Nude ; Nonsteroidal anti‐inflammatory drugs ; Oligonucleotide Array Sequence Analysis ; Pregnancy ; Proto-Oncogene Proteins - genetics ; Proto-Oncogene Proteins - metabolism ; Retroviridae - genetics ; Retroviridae - metabolism ; RNA, Small Interfering - genetics ; RNA, Small Interfering - metabolism ; Sox2 ; SOXB1 Transcription Factors - genetics ; SOXB1 Transcription Factors - metabolism ; Tamoxifen - analogs & derivatives ; Tamoxifen - pharmacology ; Teratoma - metabolism ; Teratoma - pathology ; Transfection ; Transforming Growth Factor beta3 - genetics ; Transforming Growth Factor beta3 - metabolism</subject><ispartof>Stem cells (Dayton, Ohio), 2011-10, Vol.29 (10), p.1528-1536</ispartof><rights>Copyright © 2011 AlphaMed Press</rights><rights>Copyright © 2011 AlphaMed Press.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4207-98d2544b1503f7033e160576779cb8765c0d95d197e57035b753df0bb6d4f2073</citedby><cites>FETCH-LOGICAL-c4207-98d2544b1503f7033e160576779cb8765c0d95d197e57035b753df0bb6d4f2073</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21898684$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yang, Chao‐Shun</creatorcontrib><creatorcontrib>Lopez, Claudia G.</creatorcontrib><creatorcontrib>Rana, Tariq M.</creatorcontrib><title>Discovery of Nonsteroidal Anti‐Inflammatory Drug and Anticancer Drug Enhancing Reprogramming and Induced Pluripotent Stem Cell Generation</title><title>Stem cells (Dayton, Ohio)</title><addtitle>Stem Cells</addtitle><description>Recent breakthroughs in creating induced pluripotent stem cells (iPSCs) provide alternative means to obtain embryonic stem‐like cells without destroying embryos by introducing four reprogramming factors (Oct3/4, Sox2, and Klf4/c‐Myc or Nanog/Lin28) into somatic cells. iPSCs are versatile tools for investigating early developmental processes and could become sources of tissues or cells for regenerative therapies. Here, for the first time, we describe a strategy to analyze genomics datasets of mouse embryonic fibroblasts (MEFs) and embryonic stem cells to identify genes constituting barriers to iPSC reprogramming. We further show that computational chemical biology combined with genomics analysis can be used to identify small molecules regulating reprogramming. Specific downregulation by small interfering RNAs (siRNAs) of several key MEF‐specific genes encoding proteins with catalytic or regulatory functions, including WISP1, PRRX1, HMGA2, NFIX, PRKG2, COX2, and TGFβ3, greatly increased reprogramming efficiency. Based on this rationale, we screened only 17 small molecules in reprogramming assays and discovered that the nonsteroidal anti‐inflammatory drug Nabumetone and the anticancer drug 4‐hydroxytamoxifen can generate iPSCs without Sox2. Nabumetone could also produce iPSCs in the absence of c‐Myc or Sox2 without compromising self‐renewal and pluripotency of derived iPSCs. In summary, we report a new concept of combining genomics and computational chemical biology to identify new drugs useful for iPSC generation. This hypothesis‐driven approach provides an alternative to shot‐gun screening and accelerates understanding of molecular mechanisms underlying iPSC induction. STEM CELLS 2011;29:1528–1536</description><subject>4‐Hydroxytamoxifen</subject><subject>Animals</subject><subject>Anti-Inflammatory Agents, Non-Steroidal - pharmacology</subject><subject>Antineoplastic Agents - pharmacology</subject><subject>Butanones - pharmacology</subject><subject>CCN Intercellular Signaling Proteins - genetics</subject><subject>CCN Intercellular Signaling Proteins - metabolism</subject><subject>Computational Biology</subject><subject>Cyclooxygenase 2 - genetics</subject><subject>Cyclooxygenase 2 - metabolism</subject><subject>c‐Myc</subject><subject>Drug Discovery</subject><subject>Embryonic Stem Cells - cytology</subject><subject>Embryonic Stem Cells - drug effects</subject><subject>Female</subject><subject>Fibroblasts - cytology</subject><subject>Fibroblasts - drug effects</subject><subject>Fluorescent Antibody Technique</subject><subject>Gene Silencing</subject><subject>Genetic Vectors - genetics</subject><subject>Genetic Vectors - metabolism</subject><subject>Induced pluripotent stem cell</subject><subject>Induced Pluripotent Stem Cells - cytology</subject><subject>Induced Pluripotent Stem Cells - drug effects</subject><subject>Mice</subject><subject>Mice, Nude</subject><subject>Nonsteroidal anti‐inflammatory drugs</subject><subject>Oligonucleotide Array Sequence Analysis</subject><subject>Pregnancy</subject><subject>Proto-Oncogene Proteins - genetics</subject><subject>Proto-Oncogene Proteins - metabolism</subject><subject>Retroviridae - genetics</subject><subject>Retroviridae - metabolism</subject><subject>RNA, Small Interfering - genetics</subject><subject>RNA, Small Interfering - metabolism</subject><subject>Sox2</subject><subject>SOXB1 Transcription Factors - genetics</subject><subject>SOXB1 Transcription Factors - metabolism</subject><subject>Tamoxifen - analogs & derivatives</subject><subject>Tamoxifen - pharmacology</subject><subject>Teratoma - metabolism</subject><subject>Teratoma - pathology</subject><subject>Transfection</subject><subject>Transforming Growth Factor beta3 - genetics</subject><subject>Transforming Growth Factor beta3 - metabolism</subject><issn>1066-5099</issn><issn>1549-4918</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kLtOwzAUhi0EouUi8QTII0uKncSxPVZtKZXKRbTMkWM7JSixIycFdWNn4Rl5EhwCbEzHx-c7n45-AM4wGmGEwsum1dWIYroHhpjEPIg5Zvv-jZIkIIjzAThqmmeEcEwYOwSDEDPOEhYPwfu0aKR90W4HbQ5vrfEqZwslSjg2bfH59rEweSmqSrTWM1O33UBh1PdQCiO16_9m5sl3hdnAB107u3F-pes6dmHUVmoF78utK2rbatPClb8YTnRZwrk22om2sOYEHOSibPTpTz0Gj1ez9eQ6WN7NF5PxMpBxiGjAmQpJHGeYoCinKIo0ThChCaVcZowmRCLFicKcauLHJKMkUjnKskTFuRdEx-Ci90pnm8bpPK1dUQm3SzFKuzzTLs_U5-nR8x6tt1ml1R_4G6AHgh54LUq9-1eUrtazm074BVHigjw</recordid><startdate>201110</startdate><enddate>201110</enddate><creator>Yang, Chao‐Shun</creator><creator>Lopez, Claudia G.</creator><creator>Rana, Tariq M.</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>201110</creationdate><title>Discovery of Nonsteroidal Anti‐Inflammatory Drug and Anticancer Drug Enhancing Reprogramming and Induced Pluripotent Stem Cell Generation</title><author>Yang, Chao‐Shun ; Lopez, Claudia G. ; Rana, Tariq M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4207-98d2544b1503f7033e160576779cb8765c0d95d197e57035b753df0bb6d4f2073</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>4‐Hydroxytamoxifen</topic><topic>Animals</topic><topic>Anti-Inflammatory Agents, Non-Steroidal - pharmacology</topic><topic>Antineoplastic Agents - pharmacology</topic><topic>Butanones - pharmacology</topic><topic>CCN Intercellular Signaling Proteins - genetics</topic><topic>CCN Intercellular Signaling Proteins - metabolism</topic><topic>Computational Biology</topic><topic>Cyclooxygenase 2 - genetics</topic><topic>Cyclooxygenase 2 - metabolism</topic><topic>c‐Myc</topic><topic>Drug Discovery</topic><topic>Embryonic Stem Cells - cytology</topic><topic>Embryonic Stem Cells - drug effects</topic><topic>Female</topic><topic>Fibroblasts - cytology</topic><topic>Fibroblasts - drug effects</topic><topic>Fluorescent Antibody Technique</topic><topic>Gene Silencing</topic><topic>Genetic Vectors - genetics</topic><topic>Genetic Vectors - metabolism</topic><topic>Induced pluripotent stem cell</topic><topic>Induced Pluripotent Stem Cells - cytology</topic><topic>Induced Pluripotent Stem Cells - drug effects</topic><topic>Mice</topic><topic>Mice, Nude</topic><topic>Nonsteroidal anti‐inflammatory drugs</topic><topic>Oligonucleotide Array Sequence Analysis</topic><topic>Pregnancy</topic><topic>Proto-Oncogene Proteins - genetics</topic><topic>Proto-Oncogene Proteins - metabolism</topic><topic>Retroviridae - genetics</topic><topic>Retroviridae - metabolism</topic><topic>RNA, Small Interfering - genetics</topic><topic>RNA, Small Interfering - metabolism</topic><topic>Sox2</topic><topic>SOXB1 Transcription Factors - genetics</topic><topic>SOXB1 Transcription Factors - metabolism</topic><topic>Tamoxifen - analogs & derivatives</topic><topic>Tamoxifen - pharmacology</topic><topic>Teratoma - metabolism</topic><topic>Teratoma - pathology</topic><topic>Transfection</topic><topic>Transforming Growth Factor beta3 - genetics</topic><topic>Transforming Growth Factor beta3 - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Chao‐Shun</creatorcontrib><creatorcontrib>Lopez, Claudia G.</creatorcontrib><creatorcontrib>Rana, Tariq M.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><jtitle>Stem cells (Dayton, Ohio)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Chao‐Shun</au><au>Lopez, Claudia G.</au><au>Rana, Tariq M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Discovery of Nonsteroidal Anti‐Inflammatory Drug and Anticancer Drug Enhancing Reprogramming and Induced Pluripotent Stem Cell Generation</atitle><jtitle>Stem cells (Dayton, Ohio)</jtitle><addtitle>Stem Cells</addtitle><date>2011-10</date><risdate>2011</risdate><volume>29</volume><issue>10</issue><spage>1528</spage><epage>1536</epage><pages>1528-1536</pages><issn>1066-5099</issn><eissn>1549-4918</eissn><abstract>Recent breakthroughs in creating induced pluripotent stem cells (iPSCs) provide alternative means to obtain embryonic stem‐like cells without destroying embryos by introducing four reprogramming factors (Oct3/4, Sox2, and Klf4/c‐Myc or Nanog/Lin28) into somatic cells. iPSCs are versatile tools for investigating early developmental processes and could become sources of tissues or cells for regenerative therapies. Here, for the first time, we describe a strategy to analyze genomics datasets of mouse embryonic fibroblasts (MEFs) and embryonic stem cells to identify genes constituting barriers to iPSC reprogramming. We further show that computational chemical biology combined with genomics analysis can be used to identify small molecules regulating reprogramming. Specific downregulation by small interfering RNAs (siRNAs) of several key MEF‐specific genes encoding proteins with catalytic or regulatory functions, including WISP1, PRRX1, HMGA2, NFIX, PRKG2, COX2, and TGFβ3, greatly increased reprogramming efficiency. Based on this rationale, we screened only 17 small molecules in reprogramming assays and discovered that the nonsteroidal anti‐inflammatory drug Nabumetone and the anticancer drug 4‐hydroxytamoxifen can generate iPSCs without Sox2. Nabumetone could also produce iPSCs in the absence of c‐Myc or Sox2 without compromising self‐renewal and pluripotency of derived iPSCs. In summary, we report a new concept of combining genomics and computational chemical biology to identify new drugs useful for iPSC generation. This hypothesis‐driven approach provides an alternative to shot‐gun screening and accelerates understanding of molecular mechanisms underlying iPSC induction. STEM CELLS 2011;29:1528–1536</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><pmid>21898684</pmid><doi>10.1002/stem.717</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1066-5099 |
ispartof | Stem cells (Dayton, Ohio), 2011-10, Vol.29 (10), p.1528-1536 |
issn | 1066-5099 1549-4918 |
language | eng |
recordid | cdi_crossref_primary_10_1002_stem_717 |
source | Oxford University Press Journals All Titles (1996-Current); MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection |
subjects | 4‐Hydroxytamoxifen Animals Anti-Inflammatory Agents, Non-Steroidal - pharmacology Antineoplastic Agents - pharmacology Butanones - pharmacology CCN Intercellular Signaling Proteins - genetics CCN Intercellular Signaling Proteins - metabolism Computational Biology Cyclooxygenase 2 - genetics Cyclooxygenase 2 - metabolism c‐Myc Drug Discovery Embryonic Stem Cells - cytology Embryonic Stem Cells - drug effects Female Fibroblasts - cytology Fibroblasts - drug effects Fluorescent Antibody Technique Gene Silencing Genetic Vectors - genetics Genetic Vectors - metabolism Induced pluripotent stem cell Induced Pluripotent Stem Cells - cytology Induced Pluripotent Stem Cells - drug effects Mice Mice, Nude Nonsteroidal anti‐inflammatory drugs Oligonucleotide Array Sequence Analysis Pregnancy Proto-Oncogene Proteins - genetics Proto-Oncogene Proteins - metabolism Retroviridae - genetics Retroviridae - metabolism RNA, Small Interfering - genetics RNA, Small Interfering - metabolism Sox2 SOXB1 Transcription Factors - genetics SOXB1 Transcription Factors - metabolism Tamoxifen - analogs & derivatives Tamoxifen - pharmacology Teratoma - metabolism Teratoma - pathology Transfection Transforming Growth Factor beta3 - genetics Transforming Growth Factor beta3 - metabolism |
title | Discovery of Nonsteroidal Anti‐Inflammatory Drug and Anticancer Drug Enhancing Reprogramming and Induced Pluripotent Stem Cell Generation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T21%3A33%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Discovery%20of%20Nonsteroidal%20Anti%E2%80%90Inflammatory%20Drug%20and%20Anticancer%20Drug%20Enhancing%20Reprogramming%20and%20Induced%20Pluripotent%20Stem%20Cell%20Generation&rft.jtitle=Stem%20cells%20(Dayton,%20Ohio)&rft.au=Yang,%20Chao%E2%80%90Shun&rft.date=2011-10&rft.volume=29&rft.issue=10&rft.spage=1528&rft.epage=1536&rft.pages=1528-1536&rft.issn=1066-5099&rft.eissn=1549-4918&rft_id=info:doi/10.1002/stem.717&rft_dat=%3Cwiley_cross%3ESTEM717%3C/wiley_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/21898684&rfr_iscdi=true |