Discovery of Nonsteroidal Anti‐Inflammatory Drug and Anticancer Drug Enhancing Reprogramming and Induced Pluripotent Stem Cell Generation

Recent breakthroughs in creating induced pluripotent stem cells (iPSCs) provide alternative means to obtain embryonic stem‐like cells without destroying embryos by introducing four reprogramming factors (Oct3/4, Sox2, and Klf4/c‐Myc or Nanog/Lin28) into somatic cells. iPSCs are versatile tools for i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Stem cells (Dayton, Ohio) Ohio), 2011-10, Vol.29 (10), p.1528-1536
Hauptverfasser: Yang, Chao‐Shun, Lopez, Claudia G., Rana, Tariq M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1536
container_issue 10
container_start_page 1528
container_title Stem cells (Dayton, Ohio)
container_volume 29
creator Yang, Chao‐Shun
Lopez, Claudia G.
Rana, Tariq M.
description Recent breakthroughs in creating induced pluripotent stem cells (iPSCs) provide alternative means to obtain embryonic stem‐like cells without destroying embryos by introducing four reprogramming factors (Oct3/4, Sox2, and Klf4/c‐Myc or Nanog/Lin28) into somatic cells. iPSCs are versatile tools for investigating early developmental processes and could become sources of tissues or cells for regenerative therapies. Here, for the first time, we describe a strategy to analyze genomics datasets of mouse embryonic fibroblasts (MEFs) and embryonic stem cells to identify genes constituting barriers to iPSC reprogramming. We further show that computational chemical biology combined with genomics analysis can be used to identify small molecules regulating reprogramming. Specific downregulation by small interfering RNAs (siRNAs) of several key MEF‐specific genes encoding proteins with catalytic or regulatory functions, including WISP1, PRRX1, HMGA2, NFIX, PRKG2, COX2, and TGFβ3, greatly increased reprogramming efficiency. Based on this rationale, we screened only 17 small molecules in reprogramming assays and discovered that the nonsteroidal anti‐inflammatory drug Nabumetone and the anticancer drug 4‐hydroxytamoxifen can generate iPSCs without Sox2. Nabumetone could also produce iPSCs in the absence of c‐Myc or Sox2 without compromising self‐renewal and pluripotency of derived iPSCs. In summary, we report a new concept of combining genomics and computational chemical biology to identify new drugs useful for iPSC generation. This hypothesis‐driven approach provides an alternative to shot‐gun screening and accelerates understanding of molecular mechanisms underlying iPSC induction. STEM CELLS 2011;29:1528–1536
doi_str_mv 10.1002/stem.717
format Article
fullrecord <record><control><sourceid>wiley_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_stem_717</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>STEM717</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4207-98d2544b1503f7033e160576779cb8765c0d95d197e57035b753df0bb6d4f2073</originalsourceid><addsrcrecordid>eNp1kLtOwzAUhi0EouUi8QTII0uKncSxPVZtKZXKRbTMkWM7JSixIycFdWNn4Rl5EhwCbEzHx-c7n45-AM4wGmGEwsum1dWIYroHhpjEPIg5Zvv-jZIkIIjzAThqmmeEcEwYOwSDEDPOEhYPwfu0aKR90W4HbQ5vrfEqZwslSjg2bfH59rEweSmqSrTWM1O33UBh1PdQCiO16_9m5sl3hdnAB107u3F-pes6dmHUVmoF78utK2rbatPClb8YTnRZwrk22om2sOYEHOSibPTpTz0Gj1ez9eQ6WN7NF5PxMpBxiGjAmQpJHGeYoCinKIo0ThChCaVcZowmRCLFicKcauLHJKMkUjnKskTFuRdEx-Ci90pnm8bpPK1dUQm3SzFKuzzTLs_U5-nR8x6tt1ml1R_4G6AHgh54LUq9-1eUrtazm074BVHigjw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Discovery of Nonsteroidal Anti‐Inflammatory Drug and Anticancer Drug Enhancing Reprogramming and Induced Pluripotent Stem Cell Generation</title><source>Oxford University Press Journals All Titles (1996-Current)</source><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Yang, Chao‐Shun ; Lopez, Claudia G. ; Rana, Tariq M.</creator><creatorcontrib>Yang, Chao‐Shun ; Lopez, Claudia G. ; Rana, Tariq M.</creatorcontrib><description>Recent breakthroughs in creating induced pluripotent stem cells (iPSCs) provide alternative means to obtain embryonic stem‐like cells without destroying embryos by introducing four reprogramming factors (Oct3/4, Sox2, and Klf4/c‐Myc or Nanog/Lin28) into somatic cells. iPSCs are versatile tools for investigating early developmental processes and could become sources of tissues or cells for regenerative therapies. Here, for the first time, we describe a strategy to analyze genomics datasets of mouse embryonic fibroblasts (MEFs) and embryonic stem cells to identify genes constituting barriers to iPSC reprogramming. We further show that computational chemical biology combined with genomics analysis can be used to identify small molecules regulating reprogramming. Specific downregulation by small interfering RNAs (siRNAs) of several key MEF‐specific genes encoding proteins with catalytic or regulatory functions, including WISP1, PRRX1, HMGA2, NFIX, PRKG2, COX2, and TGFβ3, greatly increased reprogramming efficiency. Based on this rationale, we screened only 17 small molecules in reprogramming assays and discovered that the nonsteroidal anti‐inflammatory drug Nabumetone and the anticancer drug 4‐hydroxytamoxifen can generate iPSCs without Sox2. Nabumetone could also produce iPSCs in the absence of c‐Myc or Sox2 without compromising self‐renewal and pluripotency of derived iPSCs. In summary, we report a new concept of combining genomics and computational chemical biology to identify new drugs useful for iPSC generation. This hypothesis‐driven approach provides an alternative to shot‐gun screening and accelerates understanding of molecular mechanisms underlying iPSC induction. STEM CELLS 2011;29:1528–1536</description><identifier>ISSN: 1066-5099</identifier><identifier>EISSN: 1549-4918</identifier><identifier>DOI: 10.1002/stem.717</identifier><identifier>PMID: 21898684</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>4‐Hydroxytamoxifen ; Animals ; Anti-Inflammatory Agents, Non-Steroidal - pharmacology ; Antineoplastic Agents - pharmacology ; Butanones - pharmacology ; CCN Intercellular Signaling Proteins - genetics ; CCN Intercellular Signaling Proteins - metabolism ; Computational Biology ; Cyclooxygenase 2 - genetics ; Cyclooxygenase 2 - metabolism ; c‐Myc ; Drug Discovery ; Embryonic Stem Cells - cytology ; Embryonic Stem Cells - drug effects ; Female ; Fibroblasts - cytology ; Fibroblasts - drug effects ; Fluorescent Antibody Technique ; Gene Silencing ; Genetic Vectors - genetics ; Genetic Vectors - metabolism ; Induced pluripotent stem cell ; Induced Pluripotent Stem Cells - cytology ; Induced Pluripotent Stem Cells - drug effects ; Mice ; Mice, Nude ; Nonsteroidal anti‐inflammatory drugs ; Oligonucleotide Array Sequence Analysis ; Pregnancy ; Proto-Oncogene Proteins - genetics ; Proto-Oncogene Proteins - metabolism ; Retroviridae - genetics ; Retroviridae - metabolism ; RNA, Small Interfering - genetics ; RNA, Small Interfering - metabolism ; Sox2 ; SOXB1 Transcription Factors - genetics ; SOXB1 Transcription Factors - metabolism ; Tamoxifen - analogs &amp; derivatives ; Tamoxifen - pharmacology ; Teratoma - metabolism ; Teratoma - pathology ; Transfection ; Transforming Growth Factor beta3 - genetics ; Transforming Growth Factor beta3 - metabolism</subject><ispartof>Stem cells (Dayton, Ohio), 2011-10, Vol.29 (10), p.1528-1536</ispartof><rights>Copyright © 2011 AlphaMed Press</rights><rights>Copyright © 2011 AlphaMed Press.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4207-98d2544b1503f7033e160576779cb8765c0d95d197e57035b753df0bb6d4f2073</citedby><cites>FETCH-LOGICAL-c4207-98d2544b1503f7033e160576779cb8765c0d95d197e57035b753df0bb6d4f2073</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21898684$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yang, Chao‐Shun</creatorcontrib><creatorcontrib>Lopez, Claudia G.</creatorcontrib><creatorcontrib>Rana, Tariq M.</creatorcontrib><title>Discovery of Nonsteroidal Anti‐Inflammatory Drug and Anticancer Drug Enhancing Reprogramming and Induced Pluripotent Stem Cell Generation</title><title>Stem cells (Dayton, Ohio)</title><addtitle>Stem Cells</addtitle><description>Recent breakthroughs in creating induced pluripotent stem cells (iPSCs) provide alternative means to obtain embryonic stem‐like cells without destroying embryos by introducing four reprogramming factors (Oct3/4, Sox2, and Klf4/c‐Myc or Nanog/Lin28) into somatic cells. iPSCs are versatile tools for investigating early developmental processes and could become sources of tissues or cells for regenerative therapies. Here, for the first time, we describe a strategy to analyze genomics datasets of mouse embryonic fibroblasts (MEFs) and embryonic stem cells to identify genes constituting barriers to iPSC reprogramming. We further show that computational chemical biology combined with genomics analysis can be used to identify small molecules regulating reprogramming. Specific downregulation by small interfering RNAs (siRNAs) of several key MEF‐specific genes encoding proteins with catalytic or regulatory functions, including WISP1, PRRX1, HMGA2, NFIX, PRKG2, COX2, and TGFβ3, greatly increased reprogramming efficiency. Based on this rationale, we screened only 17 small molecules in reprogramming assays and discovered that the nonsteroidal anti‐inflammatory drug Nabumetone and the anticancer drug 4‐hydroxytamoxifen can generate iPSCs without Sox2. Nabumetone could also produce iPSCs in the absence of c‐Myc or Sox2 without compromising self‐renewal and pluripotency of derived iPSCs. In summary, we report a new concept of combining genomics and computational chemical biology to identify new drugs useful for iPSC generation. This hypothesis‐driven approach provides an alternative to shot‐gun screening and accelerates understanding of molecular mechanisms underlying iPSC induction. STEM CELLS 2011;29:1528–1536</description><subject>4‐Hydroxytamoxifen</subject><subject>Animals</subject><subject>Anti-Inflammatory Agents, Non-Steroidal - pharmacology</subject><subject>Antineoplastic Agents - pharmacology</subject><subject>Butanones - pharmacology</subject><subject>CCN Intercellular Signaling Proteins - genetics</subject><subject>CCN Intercellular Signaling Proteins - metabolism</subject><subject>Computational Biology</subject><subject>Cyclooxygenase 2 - genetics</subject><subject>Cyclooxygenase 2 - metabolism</subject><subject>c‐Myc</subject><subject>Drug Discovery</subject><subject>Embryonic Stem Cells - cytology</subject><subject>Embryonic Stem Cells - drug effects</subject><subject>Female</subject><subject>Fibroblasts - cytology</subject><subject>Fibroblasts - drug effects</subject><subject>Fluorescent Antibody Technique</subject><subject>Gene Silencing</subject><subject>Genetic Vectors - genetics</subject><subject>Genetic Vectors - metabolism</subject><subject>Induced pluripotent stem cell</subject><subject>Induced Pluripotent Stem Cells - cytology</subject><subject>Induced Pluripotent Stem Cells - drug effects</subject><subject>Mice</subject><subject>Mice, Nude</subject><subject>Nonsteroidal anti‐inflammatory drugs</subject><subject>Oligonucleotide Array Sequence Analysis</subject><subject>Pregnancy</subject><subject>Proto-Oncogene Proteins - genetics</subject><subject>Proto-Oncogene Proteins - metabolism</subject><subject>Retroviridae - genetics</subject><subject>Retroviridae - metabolism</subject><subject>RNA, Small Interfering - genetics</subject><subject>RNA, Small Interfering - metabolism</subject><subject>Sox2</subject><subject>SOXB1 Transcription Factors - genetics</subject><subject>SOXB1 Transcription Factors - metabolism</subject><subject>Tamoxifen - analogs &amp; derivatives</subject><subject>Tamoxifen - pharmacology</subject><subject>Teratoma - metabolism</subject><subject>Teratoma - pathology</subject><subject>Transfection</subject><subject>Transforming Growth Factor beta3 - genetics</subject><subject>Transforming Growth Factor beta3 - metabolism</subject><issn>1066-5099</issn><issn>1549-4918</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kLtOwzAUhi0EouUi8QTII0uKncSxPVZtKZXKRbTMkWM7JSixIycFdWNn4Rl5EhwCbEzHx-c7n45-AM4wGmGEwsum1dWIYroHhpjEPIg5Zvv-jZIkIIjzAThqmmeEcEwYOwSDEDPOEhYPwfu0aKR90W4HbQ5vrfEqZwslSjg2bfH59rEweSmqSrTWM1O33UBh1PdQCiO16_9m5sl3hdnAB107u3F-pes6dmHUVmoF78utK2rbatPClb8YTnRZwrk22om2sOYEHOSibPTpTz0Gj1ez9eQ6WN7NF5PxMpBxiGjAmQpJHGeYoCinKIo0ThChCaVcZowmRCLFicKcauLHJKMkUjnKskTFuRdEx-Ci90pnm8bpPK1dUQm3SzFKuzzTLs_U5-nR8x6tt1ml1R_4G6AHgh54LUq9-1eUrtazm074BVHigjw</recordid><startdate>201110</startdate><enddate>201110</enddate><creator>Yang, Chao‐Shun</creator><creator>Lopez, Claudia G.</creator><creator>Rana, Tariq M.</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>201110</creationdate><title>Discovery of Nonsteroidal Anti‐Inflammatory Drug and Anticancer Drug Enhancing Reprogramming and Induced Pluripotent Stem Cell Generation</title><author>Yang, Chao‐Shun ; Lopez, Claudia G. ; Rana, Tariq M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4207-98d2544b1503f7033e160576779cb8765c0d95d197e57035b753df0bb6d4f2073</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>4‐Hydroxytamoxifen</topic><topic>Animals</topic><topic>Anti-Inflammatory Agents, Non-Steroidal - pharmacology</topic><topic>Antineoplastic Agents - pharmacology</topic><topic>Butanones - pharmacology</topic><topic>CCN Intercellular Signaling Proteins - genetics</topic><topic>CCN Intercellular Signaling Proteins - metabolism</topic><topic>Computational Biology</topic><topic>Cyclooxygenase 2 - genetics</topic><topic>Cyclooxygenase 2 - metabolism</topic><topic>c‐Myc</topic><topic>Drug Discovery</topic><topic>Embryonic Stem Cells - cytology</topic><topic>Embryonic Stem Cells - drug effects</topic><topic>Female</topic><topic>Fibroblasts - cytology</topic><topic>Fibroblasts - drug effects</topic><topic>Fluorescent Antibody Technique</topic><topic>Gene Silencing</topic><topic>Genetic Vectors - genetics</topic><topic>Genetic Vectors - metabolism</topic><topic>Induced pluripotent stem cell</topic><topic>Induced Pluripotent Stem Cells - cytology</topic><topic>Induced Pluripotent Stem Cells - drug effects</topic><topic>Mice</topic><topic>Mice, Nude</topic><topic>Nonsteroidal anti‐inflammatory drugs</topic><topic>Oligonucleotide Array Sequence Analysis</topic><topic>Pregnancy</topic><topic>Proto-Oncogene Proteins - genetics</topic><topic>Proto-Oncogene Proteins - metabolism</topic><topic>Retroviridae - genetics</topic><topic>Retroviridae - metabolism</topic><topic>RNA, Small Interfering - genetics</topic><topic>RNA, Small Interfering - metabolism</topic><topic>Sox2</topic><topic>SOXB1 Transcription Factors - genetics</topic><topic>SOXB1 Transcription Factors - metabolism</topic><topic>Tamoxifen - analogs &amp; derivatives</topic><topic>Tamoxifen - pharmacology</topic><topic>Teratoma - metabolism</topic><topic>Teratoma - pathology</topic><topic>Transfection</topic><topic>Transforming Growth Factor beta3 - genetics</topic><topic>Transforming Growth Factor beta3 - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Chao‐Shun</creatorcontrib><creatorcontrib>Lopez, Claudia G.</creatorcontrib><creatorcontrib>Rana, Tariq M.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><jtitle>Stem cells (Dayton, Ohio)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Chao‐Shun</au><au>Lopez, Claudia G.</au><au>Rana, Tariq M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Discovery of Nonsteroidal Anti‐Inflammatory Drug and Anticancer Drug Enhancing Reprogramming and Induced Pluripotent Stem Cell Generation</atitle><jtitle>Stem cells (Dayton, Ohio)</jtitle><addtitle>Stem Cells</addtitle><date>2011-10</date><risdate>2011</risdate><volume>29</volume><issue>10</issue><spage>1528</spage><epage>1536</epage><pages>1528-1536</pages><issn>1066-5099</issn><eissn>1549-4918</eissn><abstract>Recent breakthroughs in creating induced pluripotent stem cells (iPSCs) provide alternative means to obtain embryonic stem‐like cells without destroying embryos by introducing four reprogramming factors (Oct3/4, Sox2, and Klf4/c‐Myc or Nanog/Lin28) into somatic cells. iPSCs are versatile tools for investigating early developmental processes and could become sources of tissues or cells for regenerative therapies. Here, for the first time, we describe a strategy to analyze genomics datasets of mouse embryonic fibroblasts (MEFs) and embryonic stem cells to identify genes constituting barriers to iPSC reprogramming. We further show that computational chemical biology combined with genomics analysis can be used to identify small molecules regulating reprogramming. Specific downregulation by small interfering RNAs (siRNAs) of several key MEF‐specific genes encoding proteins with catalytic or regulatory functions, including WISP1, PRRX1, HMGA2, NFIX, PRKG2, COX2, and TGFβ3, greatly increased reprogramming efficiency. Based on this rationale, we screened only 17 small molecules in reprogramming assays and discovered that the nonsteroidal anti‐inflammatory drug Nabumetone and the anticancer drug 4‐hydroxytamoxifen can generate iPSCs without Sox2. Nabumetone could also produce iPSCs in the absence of c‐Myc or Sox2 without compromising self‐renewal and pluripotency of derived iPSCs. In summary, we report a new concept of combining genomics and computational chemical biology to identify new drugs useful for iPSC generation. This hypothesis‐driven approach provides an alternative to shot‐gun screening and accelerates understanding of molecular mechanisms underlying iPSC induction. STEM CELLS 2011;29:1528–1536</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><pmid>21898684</pmid><doi>10.1002/stem.717</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1066-5099
ispartof Stem cells (Dayton, Ohio), 2011-10, Vol.29 (10), p.1528-1536
issn 1066-5099
1549-4918
language eng
recordid cdi_crossref_primary_10_1002_stem_717
source Oxford University Press Journals All Titles (1996-Current); MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection
subjects 4‐Hydroxytamoxifen
Animals
Anti-Inflammatory Agents, Non-Steroidal - pharmacology
Antineoplastic Agents - pharmacology
Butanones - pharmacology
CCN Intercellular Signaling Proteins - genetics
CCN Intercellular Signaling Proteins - metabolism
Computational Biology
Cyclooxygenase 2 - genetics
Cyclooxygenase 2 - metabolism
c‐Myc
Drug Discovery
Embryonic Stem Cells - cytology
Embryonic Stem Cells - drug effects
Female
Fibroblasts - cytology
Fibroblasts - drug effects
Fluorescent Antibody Technique
Gene Silencing
Genetic Vectors - genetics
Genetic Vectors - metabolism
Induced pluripotent stem cell
Induced Pluripotent Stem Cells - cytology
Induced Pluripotent Stem Cells - drug effects
Mice
Mice, Nude
Nonsteroidal anti‐inflammatory drugs
Oligonucleotide Array Sequence Analysis
Pregnancy
Proto-Oncogene Proteins - genetics
Proto-Oncogene Proteins - metabolism
Retroviridae - genetics
Retroviridae - metabolism
RNA, Small Interfering - genetics
RNA, Small Interfering - metabolism
Sox2
SOXB1 Transcription Factors - genetics
SOXB1 Transcription Factors - metabolism
Tamoxifen - analogs & derivatives
Tamoxifen - pharmacology
Teratoma - metabolism
Teratoma - pathology
Transfection
Transforming Growth Factor beta3 - genetics
Transforming Growth Factor beta3 - metabolism
title Discovery of Nonsteroidal Anti‐Inflammatory Drug and Anticancer Drug Enhancing Reprogramming and Induced Pluripotent Stem Cell Generation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T21%3A33%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Discovery%20of%20Nonsteroidal%20Anti%E2%80%90Inflammatory%20Drug%20and%20Anticancer%20Drug%20Enhancing%20Reprogramming%20and%20Induced%20Pluripotent%20Stem%20Cell%20Generation&rft.jtitle=Stem%20cells%20(Dayton,%20Ohio)&rft.au=Yang,%20Chao%E2%80%90Shun&rft.date=2011-10&rft.volume=29&rft.issue=10&rft.spage=1528&rft.epage=1536&rft.pages=1528-1536&rft.issn=1066-5099&rft.eissn=1549-4918&rft_id=info:doi/10.1002/stem.717&rft_dat=%3Cwiley_cross%3ESTEM717%3C/wiley_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/21898684&rfr_iscdi=true