Non‐degenerate U‐statistics for data missing completely at random with application to testing independence

Summary Although the era of digitalization has enabled access to large quantities of data, due to their insufficient structuring, some data are often missing, and sometimes, the percentage of missing data is significant compared to the entire sample. On the other hand, most of the statistical method...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Stat (International Statistical Institute) 2023-01, Vol.12 (1), p.n/a
Hauptverfasser: Aleksić, Danijel, Cuparić, Marija, Milošević, Bojana
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 1
container_start_page
container_title Stat (International Statistical Institute)
container_volume 12
creator Aleksić, Danijel
Cuparić, Marija
Milošević, Bojana
description Summary Although the era of digitalization has enabled access to large quantities of data, due to their insufficient structuring, some data are often missing, and sometimes, the percentage of missing data is significant compared to the entire sample. On the other hand, most of the statistical methodology is designed for complete data. Here, we explore the asymptotic properties of non‐degenerate U‐statistics when the data are missing completely at random and a complete‐case approach is utilized. The obtained results are applied to the estimator of Kendall's tau used for testing independence. In this context, the median‐based imputation approach is also considered, and asymptotic properties are explored. In addition, both complete‐case and median imputation approaches are compared in an extensive Monte Carlo study.
doi_str_mv 10.1002/sta4.634
format Article
fullrecord <record><control><sourceid>wiley_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_sta4_634</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>STA4634</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2654-a7f2b4dfb27ea598da38beeb6c01ec79df357712366aa45bba8b8320801476103</originalsourceid><addsrcrecordid>eNp1kMtKAzEUhoMoWGrBR8jSzdTc5rYsxRsUXdiuh5PkTI3MZIZJoHTnI_iMPokpunDj5lzg-7_FT8g1Z0vOmLgNEdSykOqMzARTdcbzUp7_uS_JIoR3xhjPRS0LOSP-efBfH58W9-hxgoh0l97kiS5EZwJth4laiEB7F4Lze2qGfuwwYnekEOkE3g49Pbj4RmEcO2dScvA0DjRiMqSA8xZHTMMbvCIXLXQBF797Tnb3d9v1Y7Z5eXharzaZEUWuMihboZVttSgR8rqyICuNqAvDOJqytq3My5ILWRQAKtcaKl1JwSrGVVlwJufk5sdrpiGECdtmnFwP07HhrDlV1ZyqalJVCc1-0IPr8Pgv17xuV-rEfwOYL26e</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Non‐degenerate U‐statistics for data missing completely at random with application to testing independence</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Aleksić, Danijel ; Cuparić, Marija ; Milošević, Bojana</creator><creatorcontrib>Aleksić, Danijel ; Cuparić, Marija ; Milošević, Bojana</creatorcontrib><description>Summary Although the era of digitalization has enabled access to large quantities of data, due to their insufficient structuring, some data are often missing, and sometimes, the percentage of missing data is significant compared to the entire sample. On the other hand, most of the statistical methodology is designed for complete data. Here, we explore the asymptotic properties of non‐degenerate U‐statistics when the data are missing completely at random and a complete‐case approach is utilized. The obtained results are applied to the estimator of Kendall's tau used for testing independence. In this context, the median‐based imputation approach is also considered, and asymptotic properties are explored. In addition, both complete‐case and median imputation approaches are compared in an extensive Monte Carlo study.</description><identifier>ISSN: 2049-1573</identifier><identifier>EISSN: 2049-1573</identifier><identifier>DOI: 10.1002/sta4.634</identifier><language>eng</language><subject>Kendall coefficient ; MCAR data ; median imputation</subject><ispartof>Stat (International Statistical Institute), 2023-01, Vol.12 (1), p.n/a</ispartof><rights>2023 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2654-a7f2b4dfb27ea598da38beeb6c01ec79df357712366aa45bba8b8320801476103</citedby><cites>FETCH-LOGICAL-c2654-a7f2b4dfb27ea598da38beeb6c01ec79df357712366aa45bba8b8320801476103</cites><orcidid>0000-0002-0460-400X ; 0000-0001-5071-8350 ; 0000-0001-8243-9794</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsta4.634$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsta4.634$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Aleksić, Danijel</creatorcontrib><creatorcontrib>Cuparić, Marija</creatorcontrib><creatorcontrib>Milošević, Bojana</creatorcontrib><title>Non‐degenerate U‐statistics for data missing completely at random with application to testing independence</title><title>Stat (International Statistical Institute)</title><description>Summary Although the era of digitalization has enabled access to large quantities of data, due to their insufficient structuring, some data are often missing, and sometimes, the percentage of missing data is significant compared to the entire sample. On the other hand, most of the statistical methodology is designed for complete data. Here, we explore the asymptotic properties of non‐degenerate U‐statistics when the data are missing completely at random and a complete‐case approach is utilized. The obtained results are applied to the estimator of Kendall's tau used for testing independence. In this context, the median‐based imputation approach is also considered, and asymptotic properties are explored. In addition, both complete‐case and median imputation approaches are compared in an extensive Monte Carlo study.</description><subject>Kendall coefficient</subject><subject>MCAR data</subject><subject>median imputation</subject><issn>2049-1573</issn><issn>2049-1573</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kMtKAzEUhoMoWGrBR8jSzdTc5rYsxRsUXdiuh5PkTI3MZIZJoHTnI_iMPokpunDj5lzg-7_FT8g1Z0vOmLgNEdSykOqMzARTdcbzUp7_uS_JIoR3xhjPRS0LOSP-efBfH58W9-hxgoh0l97kiS5EZwJth4laiEB7F4Lze2qGfuwwYnekEOkE3g49Pbj4RmEcO2dScvA0DjRiMqSA8xZHTMMbvCIXLXQBF797Tnb3d9v1Y7Z5eXharzaZEUWuMihboZVttSgR8rqyICuNqAvDOJqytq3My5ILWRQAKtcaKl1JwSrGVVlwJufk5sdrpiGECdtmnFwP07HhrDlV1ZyqalJVCc1-0IPr8Pgv17xuV-rEfwOYL26e</recordid><startdate>202301</startdate><enddate>202301</enddate><creator>Aleksić, Danijel</creator><creator>Cuparić, Marija</creator><creator>Milošević, Bojana</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-0460-400X</orcidid><orcidid>https://orcid.org/0000-0001-5071-8350</orcidid><orcidid>https://orcid.org/0000-0001-8243-9794</orcidid></search><sort><creationdate>202301</creationdate><title>Non‐degenerate U‐statistics for data missing completely at random with application to testing independence</title><author>Aleksić, Danijel ; Cuparić, Marija ; Milošević, Bojana</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2654-a7f2b4dfb27ea598da38beeb6c01ec79df357712366aa45bba8b8320801476103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Kendall coefficient</topic><topic>MCAR data</topic><topic>median imputation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aleksić, Danijel</creatorcontrib><creatorcontrib>Cuparić, Marija</creatorcontrib><creatorcontrib>Milošević, Bojana</creatorcontrib><collection>CrossRef</collection><jtitle>Stat (International Statistical Institute)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aleksić, Danijel</au><au>Cuparić, Marija</au><au>Milošević, Bojana</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Non‐degenerate U‐statistics for data missing completely at random with application to testing independence</atitle><jtitle>Stat (International Statistical Institute)</jtitle><date>2023-01</date><risdate>2023</risdate><volume>12</volume><issue>1</issue><epage>n/a</epage><issn>2049-1573</issn><eissn>2049-1573</eissn><abstract>Summary Although the era of digitalization has enabled access to large quantities of data, due to their insufficient structuring, some data are often missing, and sometimes, the percentage of missing data is significant compared to the entire sample. On the other hand, most of the statistical methodology is designed for complete data. Here, we explore the asymptotic properties of non‐degenerate U‐statistics when the data are missing completely at random and a complete‐case approach is utilized. The obtained results are applied to the estimator of Kendall's tau used for testing independence. In this context, the median‐based imputation approach is also considered, and asymptotic properties are explored. In addition, both complete‐case and median imputation approaches are compared in an extensive Monte Carlo study.</abstract><doi>10.1002/sta4.634</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-0460-400X</orcidid><orcidid>https://orcid.org/0000-0001-5071-8350</orcidid><orcidid>https://orcid.org/0000-0001-8243-9794</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2049-1573
ispartof Stat (International Statistical Institute), 2023-01, Vol.12 (1), p.n/a
issn 2049-1573
2049-1573
language eng
recordid cdi_crossref_primary_10_1002_sta4_634
source Wiley Online Library Journals Frontfile Complete
subjects Kendall coefficient
MCAR data
median imputation
title Non‐degenerate U‐statistics for data missing completely at random with application to testing independence
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T03%3A14%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Non%E2%80%90degenerate%20U%E2%80%90statistics%20for%20data%20missing%20completely%20at%20random%20with%20application%20to%20testing%20independence&rft.jtitle=Stat%20(International%20Statistical%20Institute)&rft.au=Aleksi%C4%87,%20Danijel&rft.date=2023-01&rft.volume=12&rft.issue=1&rft.epage=n/a&rft.issn=2049-1573&rft.eissn=2049-1573&rft_id=info:doi/10.1002/sta4.634&rft_dat=%3Cwiley_cross%3ESTA4634%3C/wiley_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true