Estimation and inference for functional linear regression models with partially varying regression coefficients

In this paper, we present a class of functional linear regression models with varying coefficients of a functional response on one or multiple functional predictors and scalar predictors. In particular, the approach can accommodate densely or sparsely sampled functional responses as well as multiple...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Stat (International Statistical Institute) 2020, Vol.9 (1), p.n/a
Hauptverfasser: Cao, Guanqun, Wang, Shuoyang, Wang, Lily
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 1
container_start_page
container_title Stat (International Statistical Institute)
container_volume 9
creator Cao, Guanqun
Wang, Shuoyang
Wang, Lily
description In this paper, we present a class of functional linear regression models with varying coefficients of a functional response on one or multiple functional predictors and scalar predictors. In particular, the approach can accommodate densely or sparsely sampled functional responses as well as multiple scalar and functional predictors. It also allows for the combination of continuous or categorical covariates. Tensor product B‐spline basis is proposed for the estimation of the bivariate coefficient functions. We show that our estimators hold asymptotic consistency and normality. Several numerical examples demonstrate superior performance of the proposed methods against two existing approaches. The proposed method is also applied to a real data example.
doi_str_mv 10.1002/sta4.286
format Article
fullrecord <record><control><sourceid>wiley_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_sta4_286</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>STA4286</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2656-f9852142ab779be2b2f4f5c903ec1bab05f35693d1cd28f4e30b76c292a3e53f3</originalsourceid><addsrcrecordid>eNp10D1rwzAQBmBRWmhIA_0JGrs41YdlW2MI6QcEOjSdjSzfpSqKHCS3wf--NumQpdMd3MML9xJyz9mSMyYeU2_ypaiKKzITLNcZV6W8vthvySKlL8YYV0LLQs5It0m9O5jedYGa0FIXECIECxS7SPE72OlkPPUugIk0wj5CShM_dC34RE-u_6RHE3tnvB_oj4mDC_tLaDtAdNZB6NMduUHjEyz-5px8PG1265ds-_b8ul5tMysKVWSoKyV4LkxTlroB0QjMUVnNJFjemIYplKrQsuW2FRXmIFlTFlZoYSQoiXJOHs65NnYpRcD6GMc_41BzVk9d1VNX9djVSLMzPTkPw7-uft-t8sn_AniLbeg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Estimation and inference for functional linear regression models with partially varying regression coefficients</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Cao, Guanqun ; Wang, Shuoyang ; Wang, Lily</creator><creatorcontrib>Cao, Guanqun ; Wang, Shuoyang ; Wang, Lily</creatorcontrib><description>In this paper, we present a class of functional linear regression models with varying coefficients of a functional response on one or multiple functional predictors and scalar predictors. In particular, the approach can accommodate densely or sparsely sampled functional responses as well as multiple scalar and functional predictors. It also allows for the combination of continuous or categorical covariates. Tensor product B‐spline basis is proposed for the estimation of the bivariate coefficient functions. We show that our estimators hold asymptotic consistency and normality. Several numerical examples demonstrate superior performance of the proposed methods against two existing approaches. The proposed method is also applied to a real data example.</description><identifier>ISSN: 2049-1573</identifier><identifier>EISSN: 2049-1573</identifier><identifier>DOI: 10.1002/sta4.286</identifier><language>eng</language><subject>B‐splines ; functional data analysis ; function‐on‐function regression ; multiple functional predictors</subject><ispartof>Stat (International Statistical Institute), 2020, Vol.9 (1), p.n/a</ispartof><rights>2020 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2656-f9852142ab779be2b2f4f5c903ec1bab05f35693d1cd28f4e30b76c292a3e53f3</citedby><cites>FETCH-LOGICAL-c2656-f9852142ab779be2b2f4f5c903ec1bab05f35693d1cd28f4e30b76c292a3e53f3</cites><orcidid>0000-0001-8432-9986 ; 0000-0002-6454-3210 ; 0000-0001-6963-6267</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsta4.286$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsta4.286$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,778,782,1414,4012,27906,27907,27908,45557,45558</link.rule.ids></links><search><creatorcontrib>Cao, Guanqun</creatorcontrib><creatorcontrib>Wang, Shuoyang</creatorcontrib><creatorcontrib>Wang, Lily</creatorcontrib><title>Estimation and inference for functional linear regression models with partially varying regression coefficients</title><title>Stat (International Statistical Institute)</title><description>In this paper, we present a class of functional linear regression models with varying coefficients of a functional response on one or multiple functional predictors and scalar predictors. In particular, the approach can accommodate densely or sparsely sampled functional responses as well as multiple scalar and functional predictors. It also allows for the combination of continuous or categorical covariates. Tensor product B‐spline basis is proposed for the estimation of the bivariate coefficient functions. We show that our estimators hold asymptotic consistency and normality. Several numerical examples demonstrate superior performance of the proposed methods against two existing approaches. The proposed method is also applied to a real data example.</description><subject>B‐splines</subject><subject>functional data analysis</subject><subject>function‐on‐function regression</subject><subject>multiple functional predictors</subject><issn>2049-1573</issn><issn>2049-1573</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp10D1rwzAQBmBRWmhIA_0JGrs41YdlW2MI6QcEOjSdjSzfpSqKHCS3wf--NumQpdMd3MML9xJyz9mSMyYeU2_ypaiKKzITLNcZV6W8vthvySKlL8YYV0LLQs5It0m9O5jedYGa0FIXECIECxS7SPE72OlkPPUugIk0wj5CShM_dC34RE-u_6RHE3tnvB_oj4mDC_tLaDtAdNZB6NMduUHjEyz-5px8PG1265ds-_b8ul5tMysKVWSoKyV4LkxTlroB0QjMUVnNJFjemIYplKrQsuW2FRXmIFlTFlZoYSQoiXJOHs65NnYpRcD6GMc_41BzVk9d1VNX9djVSLMzPTkPw7-uft-t8sn_AniLbeg</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Cao, Guanqun</creator><creator>Wang, Shuoyang</creator><creator>Wang, Lily</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-8432-9986</orcidid><orcidid>https://orcid.org/0000-0002-6454-3210</orcidid><orcidid>https://orcid.org/0000-0001-6963-6267</orcidid></search><sort><creationdate>2020</creationdate><title>Estimation and inference for functional linear regression models with partially varying regression coefficients</title><author>Cao, Guanqun ; Wang, Shuoyang ; Wang, Lily</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2656-f9852142ab779be2b2f4f5c903ec1bab05f35693d1cd28f4e30b76c292a3e53f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>B‐splines</topic><topic>functional data analysis</topic><topic>function‐on‐function regression</topic><topic>multiple functional predictors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cao, Guanqun</creatorcontrib><creatorcontrib>Wang, Shuoyang</creatorcontrib><creatorcontrib>Wang, Lily</creatorcontrib><collection>CrossRef</collection><jtitle>Stat (International Statistical Institute)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cao, Guanqun</au><au>Wang, Shuoyang</au><au>Wang, Lily</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Estimation and inference for functional linear regression models with partially varying regression coefficients</atitle><jtitle>Stat (International Statistical Institute)</jtitle><date>2020</date><risdate>2020</risdate><volume>9</volume><issue>1</issue><epage>n/a</epage><issn>2049-1573</issn><eissn>2049-1573</eissn><abstract>In this paper, we present a class of functional linear regression models with varying coefficients of a functional response on one or multiple functional predictors and scalar predictors. In particular, the approach can accommodate densely or sparsely sampled functional responses as well as multiple scalar and functional predictors. It also allows for the combination of continuous or categorical covariates. Tensor product B‐spline basis is proposed for the estimation of the bivariate coefficient functions. We show that our estimators hold asymptotic consistency and normality. Several numerical examples demonstrate superior performance of the proposed methods against two existing approaches. The proposed method is also applied to a real data example.</abstract><doi>10.1002/sta4.286</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-8432-9986</orcidid><orcidid>https://orcid.org/0000-0002-6454-3210</orcidid><orcidid>https://orcid.org/0000-0001-6963-6267</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2049-1573
ispartof Stat (International Statistical Institute), 2020, Vol.9 (1), p.n/a
issn 2049-1573
2049-1573
language eng
recordid cdi_crossref_primary_10_1002_sta4_286
source Wiley Online Library Journals Frontfile Complete
subjects B‐splines
functional data analysis
function‐on‐function regression
multiple functional predictors
title Estimation and inference for functional linear regression models with partially varying regression coefficients
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T09%3A58%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Estimation%20and%20inference%20for%20functional%20linear%20regression%20models%20with%20partially%20varying%20regression%20coefficients&rft.jtitle=Stat%20(International%20Statistical%20Institute)&rft.au=Cao,%20Guanqun&rft.date=2020&rft.volume=9&rft.issue=1&rft.epage=n/a&rft.issn=2049-1573&rft.eissn=2049-1573&rft_id=info:doi/10.1002/sta4.286&rft_dat=%3Cwiley_cross%3ESTA4286%3C/wiley_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true