Estimation and inference for functional linear regression models with partially varying regression coefficients
In this paper, we present a class of functional linear regression models with varying coefficients of a functional response on one or multiple functional predictors and scalar predictors. In particular, the approach can accommodate densely or sparsely sampled functional responses as well as multiple...
Gespeichert in:
Veröffentlicht in: | Stat (International Statistical Institute) 2020, Vol.9 (1), p.n/a |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 1 |
container_start_page | |
container_title | Stat (International Statistical Institute) |
container_volume | 9 |
creator | Cao, Guanqun Wang, Shuoyang Wang, Lily |
description | In this paper, we present a class of functional linear regression models with varying coefficients of a functional response on one or multiple functional predictors and scalar predictors. In particular, the approach can accommodate densely or sparsely sampled functional responses as well as multiple scalar and functional predictors. It also allows for the combination of continuous or categorical covariates. Tensor product B‐spline basis is proposed for the estimation of the bivariate coefficient functions. We show that our estimators hold asymptotic consistency and normality. Several numerical examples demonstrate superior performance of the proposed methods against two existing approaches. The proposed method is also applied to a real data example. |
doi_str_mv | 10.1002/sta4.286 |
format | Article |
fullrecord | <record><control><sourceid>wiley_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_sta4_286</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>STA4286</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2656-f9852142ab779be2b2f4f5c903ec1bab05f35693d1cd28f4e30b76c292a3e53f3</originalsourceid><addsrcrecordid>eNp10D1rwzAQBmBRWmhIA_0JGrs41YdlW2MI6QcEOjSdjSzfpSqKHCS3wf--NumQpdMd3MML9xJyz9mSMyYeU2_ypaiKKzITLNcZV6W8vthvySKlL8YYV0LLQs5It0m9O5jedYGa0FIXECIECxS7SPE72OlkPPUugIk0wj5CShM_dC34RE-u_6RHE3tnvB_oj4mDC_tLaDtAdNZB6NMduUHjEyz-5px8PG1265ds-_b8ul5tMysKVWSoKyV4LkxTlroB0QjMUVnNJFjemIYplKrQsuW2FRXmIFlTFlZoYSQoiXJOHs65NnYpRcD6GMc_41BzVk9d1VNX9djVSLMzPTkPw7-uft-t8sn_AniLbeg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Estimation and inference for functional linear regression models with partially varying regression coefficients</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Cao, Guanqun ; Wang, Shuoyang ; Wang, Lily</creator><creatorcontrib>Cao, Guanqun ; Wang, Shuoyang ; Wang, Lily</creatorcontrib><description>In this paper, we present a class of functional linear regression models with varying coefficients of a functional response on one or multiple functional predictors and scalar predictors. In particular, the approach can accommodate densely or sparsely sampled functional responses as well as multiple scalar and functional predictors. It also allows for the combination of continuous or categorical covariates. Tensor product B‐spline basis is proposed for the estimation of the bivariate coefficient functions. We show that our estimators hold asymptotic consistency and normality. Several numerical examples demonstrate superior performance of the proposed methods against two existing approaches. The proposed method is also applied to a real data example.</description><identifier>ISSN: 2049-1573</identifier><identifier>EISSN: 2049-1573</identifier><identifier>DOI: 10.1002/sta4.286</identifier><language>eng</language><subject>B‐splines ; functional data analysis ; function‐on‐function regression ; multiple functional predictors</subject><ispartof>Stat (International Statistical Institute), 2020, Vol.9 (1), p.n/a</ispartof><rights>2020 John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2656-f9852142ab779be2b2f4f5c903ec1bab05f35693d1cd28f4e30b76c292a3e53f3</citedby><cites>FETCH-LOGICAL-c2656-f9852142ab779be2b2f4f5c903ec1bab05f35693d1cd28f4e30b76c292a3e53f3</cites><orcidid>0000-0001-8432-9986 ; 0000-0002-6454-3210 ; 0000-0001-6963-6267</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsta4.286$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsta4.286$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,778,782,1414,4012,27906,27907,27908,45557,45558</link.rule.ids></links><search><creatorcontrib>Cao, Guanqun</creatorcontrib><creatorcontrib>Wang, Shuoyang</creatorcontrib><creatorcontrib>Wang, Lily</creatorcontrib><title>Estimation and inference for functional linear regression models with partially varying regression coefficients</title><title>Stat (International Statistical Institute)</title><description>In this paper, we present a class of functional linear regression models with varying coefficients of a functional response on one or multiple functional predictors and scalar predictors. In particular, the approach can accommodate densely or sparsely sampled functional responses as well as multiple scalar and functional predictors. It also allows for the combination of continuous or categorical covariates. Tensor product B‐spline basis is proposed for the estimation of the bivariate coefficient functions. We show that our estimators hold asymptotic consistency and normality. Several numerical examples demonstrate superior performance of the proposed methods against two existing approaches. The proposed method is also applied to a real data example.</description><subject>B‐splines</subject><subject>functional data analysis</subject><subject>function‐on‐function regression</subject><subject>multiple functional predictors</subject><issn>2049-1573</issn><issn>2049-1573</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp10D1rwzAQBmBRWmhIA_0JGrs41YdlW2MI6QcEOjSdjSzfpSqKHCS3wf--NumQpdMd3MML9xJyz9mSMyYeU2_ypaiKKzITLNcZV6W8vthvySKlL8YYV0LLQs5It0m9O5jedYGa0FIXECIECxS7SPE72OlkPPUugIk0wj5CShM_dC34RE-u_6RHE3tnvB_oj4mDC_tLaDtAdNZB6NMduUHjEyz-5px8PG1265ds-_b8ul5tMysKVWSoKyV4LkxTlroB0QjMUVnNJFjemIYplKrQsuW2FRXmIFlTFlZoYSQoiXJOHs65NnYpRcD6GMc_41BzVk9d1VNX9djVSLMzPTkPw7-uft-t8sn_AniLbeg</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Cao, Guanqun</creator><creator>Wang, Shuoyang</creator><creator>Wang, Lily</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-8432-9986</orcidid><orcidid>https://orcid.org/0000-0002-6454-3210</orcidid><orcidid>https://orcid.org/0000-0001-6963-6267</orcidid></search><sort><creationdate>2020</creationdate><title>Estimation and inference for functional linear regression models with partially varying regression coefficients</title><author>Cao, Guanqun ; Wang, Shuoyang ; Wang, Lily</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2656-f9852142ab779be2b2f4f5c903ec1bab05f35693d1cd28f4e30b76c292a3e53f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>B‐splines</topic><topic>functional data analysis</topic><topic>function‐on‐function regression</topic><topic>multiple functional predictors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cao, Guanqun</creatorcontrib><creatorcontrib>Wang, Shuoyang</creatorcontrib><creatorcontrib>Wang, Lily</creatorcontrib><collection>CrossRef</collection><jtitle>Stat (International Statistical Institute)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cao, Guanqun</au><au>Wang, Shuoyang</au><au>Wang, Lily</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Estimation and inference for functional linear regression models with partially varying regression coefficients</atitle><jtitle>Stat (International Statistical Institute)</jtitle><date>2020</date><risdate>2020</risdate><volume>9</volume><issue>1</issue><epage>n/a</epage><issn>2049-1573</issn><eissn>2049-1573</eissn><abstract>In this paper, we present a class of functional linear regression models with varying coefficients of a functional response on one or multiple functional predictors and scalar predictors. In particular, the approach can accommodate densely or sparsely sampled functional responses as well as multiple scalar and functional predictors. It also allows for the combination of continuous or categorical covariates. Tensor product B‐spline basis is proposed for the estimation of the bivariate coefficient functions. We show that our estimators hold asymptotic consistency and normality. Several numerical examples demonstrate superior performance of the proposed methods against two existing approaches. The proposed method is also applied to a real data example.</abstract><doi>10.1002/sta4.286</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-8432-9986</orcidid><orcidid>https://orcid.org/0000-0002-6454-3210</orcidid><orcidid>https://orcid.org/0000-0001-6963-6267</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2049-1573 |
ispartof | Stat (International Statistical Institute), 2020, Vol.9 (1), p.n/a |
issn | 2049-1573 2049-1573 |
language | eng |
recordid | cdi_crossref_primary_10_1002_sta4_286 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | B‐splines functional data analysis function‐on‐function regression multiple functional predictors |
title | Estimation and inference for functional linear regression models with partially varying regression coefficients |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T09%3A58%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Estimation%20and%20inference%20for%20functional%20linear%20regression%20models%20with%20partially%20varying%20regression%20coefficients&rft.jtitle=Stat%20(International%20Statistical%20Institute)&rft.au=Cao,%20Guanqun&rft.date=2020&rft.volume=9&rft.issue=1&rft.epage=n/a&rft.issn=2049-1573&rft.eissn=2049-1573&rft_id=info:doi/10.1002/sta4.286&rft_dat=%3Cwiley_cross%3ESTA4286%3C/wiley_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |