A comparison of some conformal quantile regression methods

We compare two recent methods that combine conformal inference with quantile regression to produce locally adaptive and marginally valid prediction intervals under sample exchangeability (Romano, Patterson, & Candès, 2019, arXiv:1905.03222; Kivaranovic, Johnson, & Leeb, 2019, arXiv:1905.1063...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Stat (International Statistical Institute) 2020, Vol.9 (1), p.n/a
Hauptverfasser: Sesia, Matteo, Candès, Emmanuel J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 1
container_start_page
container_title Stat (International Statistical Institute)
container_volume 9
creator Sesia, Matteo
Candès, Emmanuel J.
description We compare two recent methods that combine conformal inference with quantile regression to produce locally adaptive and marginally valid prediction intervals under sample exchangeability (Romano, Patterson, & Candès, 2019, arXiv:1905.03222; Kivaranovic, Johnson, & Leeb, 2019, arXiv:1905.10634). First, we prove that these two approaches are asymptotically efficient in large samples, under some additional assumptions. Then we compare them empirically on simulated and real data. Our results demonstrate that the method of Romano et al. typically yields tighter prediction intervals in finite samples. Finally, we discuss how to tune these procedures by fixing the relative proportions of observations used for training and conformalization. Our empirical results suggest that using between 70% and 90% of the data for training often achieves a good balance between minimizing the average width of the predictions intervals and the variability in their practical coverage.
doi_str_mv 10.1002/sta4.261
format Article
fullrecord <record><control><sourceid>wiley_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_sta4_261</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>STA4261</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2651-736ad9e7e2a4b67bd0128ddc4d14759e1345eef748e26f4b280baaf4698c57b13</originalsourceid><addsrcrecordid>eNp1j01Lw0AURQdRsNSCPyFLN6nz5jNxF4paoeDCuh4mmTcaSTJ1JiL99ybUhRtX7_I4XO4h5BroGihlt2m0Ys0UnJEFo6LMQWp-_idfklVKH5RSkKzkii_IXZU1oT_Y2KYwZMFnKfQ4vQYfYm-77PPLDmPbYRbxLWJK7UT1OL4Hl67IhbddwtXvXZLXh_v9Zpvvnh-fNtUub5iSkGuurCtRI7OiVrp2FFjhXCMcCC1LBC4koteiQKa8qFlBa2u9UGXRSF0DX5KbU28TQ0oRvTnEtrfxaICaWdvM2mbSntD8hH5Pk4__cuZlX4mZ_wFO1ljn</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A comparison of some conformal quantile regression methods</title><source>Wiley-Blackwell Journals</source><creator>Sesia, Matteo ; Candès, Emmanuel J.</creator><creatorcontrib>Sesia, Matteo ; Candès, Emmanuel J.</creatorcontrib><description>We compare two recent methods that combine conformal inference with quantile regression to produce locally adaptive and marginally valid prediction intervals under sample exchangeability (Romano, Patterson, &amp; Candès, 2019, arXiv:1905.03222; Kivaranovic, Johnson, &amp; Leeb, 2019, arXiv:1905.10634). First, we prove that these two approaches are asymptotically efficient in large samples, under some additional assumptions. Then we compare them empirically on simulated and real data. Our results demonstrate that the method of Romano et al. typically yields tighter prediction intervals in finite samples. Finally, we discuss how to tune these procedures by fixing the relative proportions of observations used for training and conformalization. Our empirical results suggest that using between 70% and 90% of the data for training often achieves a good balance between minimizing the average width of the predictions intervals and the variability in their practical coverage.</description><identifier>ISSN: 2049-1573</identifier><identifier>EISSN: 2049-1573</identifier><identifier>DOI: 10.1002/sta4.261</identifier><language>eng</language><subject>conformal inference ; neural networks ; quantile regression ; random forests</subject><ispartof>Stat (International Statistical Institute), 2020, Vol.9 (1), p.n/a</ispartof><rights>2020 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2651-736ad9e7e2a4b67bd0128ddc4d14759e1345eef748e26f4b280baaf4698c57b13</citedby><cites>FETCH-LOGICAL-c2651-736ad9e7e2a4b67bd0128ddc4d14759e1345eef748e26f4b280baaf4698c57b13</cites><orcidid>0000-0001-9046-907X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsta4.261$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsta4.261$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,4010,27900,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Sesia, Matteo</creatorcontrib><creatorcontrib>Candès, Emmanuel J.</creatorcontrib><title>A comparison of some conformal quantile regression methods</title><title>Stat (International Statistical Institute)</title><description>We compare two recent methods that combine conformal inference with quantile regression to produce locally adaptive and marginally valid prediction intervals under sample exchangeability (Romano, Patterson, &amp; Candès, 2019, arXiv:1905.03222; Kivaranovic, Johnson, &amp; Leeb, 2019, arXiv:1905.10634). First, we prove that these two approaches are asymptotically efficient in large samples, under some additional assumptions. Then we compare them empirically on simulated and real data. Our results demonstrate that the method of Romano et al. typically yields tighter prediction intervals in finite samples. Finally, we discuss how to tune these procedures by fixing the relative proportions of observations used for training and conformalization. Our empirical results suggest that using between 70% and 90% of the data for training often achieves a good balance between minimizing the average width of the predictions intervals and the variability in their practical coverage.</description><subject>conformal inference</subject><subject>neural networks</subject><subject>quantile regression</subject><subject>random forests</subject><issn>2049-1573</issn><issn>2049-1573</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1j01Lw0AURQdRsNSCPyFLN6nz5jNxF4paoeDCuh4mmTcaSTJ1JiL99ybUhRtX7_I4XO4h5BroGihlt2m0Ys0UnJEFo6LMQWp-_idfklVKH5RSkKzkii_IXZU1oT_Y2KYwZMFnKfQ4vQYfYm-77PPLDmPbYRbxLWJK7UT1OL4Hl67IhbddwtXvXZLXh_v9Zpvvnh-fNtUub5iSkGuurCtRI7OiVrp2FFjhXCMcCC1LBC4koteiQKa8qFlBa2u9UGXRSF0DX5KbU28TQ0oRvTnEtrfxaICaWdvM2mbSntD8hH5Pk4__cuZlX4mZ_wFO1ljn</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Sesia, Matteo</creator><creator>Candès, Emmanuel J.</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-9046-907X</orcidid></search><sort><creationdate>2020</creationdate><title>A comparison of some conformal quantile regression methods</title><author>Sesia, Matteo ; Candès, Emmanuel J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2651-736ad9e7e2a4b67bd0128ddc4d14759e1345eef748e26f4b280baaf4698c57b13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>conformal inference</topic><topic>neural networks</topic><topic>quantile regression</topic><topic>random forests</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sesia, Matteo</creatorcontrib><creatorcontrib>Candès, Emmanuel J.</creatorcontrib><collection>CrossRef</collection><jtitle>Stat (International Statistical Institute)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sesia, Matteo</au><au>Candès, Emmanuel J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A comparison of some conformal quantile regression methods</atitle><jtitle>Stat (International Statistical Institute)</jtitle><date>2020</date><risdate>2020</risdate><volume>9</volume><issue>1</issue><epage>n/a</epage><issn>2049-1573</issn><eissn>2049-1573</eissn><abstract>We compare two recent methods that combine conformal inference with quantile regression to produce locally adaptive and marginally valid prediction intervals under sample exchangeability (Romano, Patterson, &amp; Candès, 2019, arXiv:1905.03222; Kivaranovic, Johnson, &amp; Leeb, 2019, arXiv:1905.10634). First, we prove that these two approaches are asymptotically efficient in large samples, under some additional assumptions. Then we compare them empirically on simulated and real data. Our results demonstrate that the method of Romano et al. typically yields tighter prediction intervals in finite samples. Finally, we discuss how to tune these procedures by fixing the relative proportions of observations used for training and conformalization. Our empirical results suggest that using between 70% and 90% of the data for training often achieves a good balance between minimizing the average width of the predictions intervals and the variability in their practical coverage.</abstract><doi>10.1002/sta4.261</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-9046-907X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2049-1573
ispartof Stat (International Statistical Institute), 2020, Vol.9 (1), p.n/a
issn 2049-1573
2049-1573
language eng
recordid cdi_crossref_primary_10_1002_sta4_261
source Wiley-Blackwell Journals
subjects conformal inference
neural networks
quantile regression
random forests
title A comparison of some conformal quantile regression methods
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T18%3A52%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20comparison%20of%20some%20conformal%20quantile%20regression%20methods&rft.jtitle=Stat%20(International%20Statistical%20Institute)&rft.au=Sesia,%20Matteo&rft.date=2020&rft.volume=9&rft.issue=1&rft.epage=n/a&rft.issn=2049-1573&rft.eissn=2049-1573&rft_id=info:doi/10.1002/sta4.261&rft_dat=%3Cwiley_cross%3ESTA4261%3C/wiley_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true