Atomic‐Scale Phase Transformation in Perovskite LaCoO x Resistive Switching Memristive Devices

Resistive random‐access memory (RRAM) is considered the next‐generation nonvolatile memory owing to its simplicity, low power consumption, and high storage density. Resistive switching (RS) occurs in a wide range of materials among the transition metal oxides. Herein, an epitaxial ternary metal oxid...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Small structures 2024-07, Vol.5 (7)
Hauptverfasser: Chen, Yen‐Jung, Lo, Hung‐Yang, Chiu, Chun‐Chien, Wang, Che‐Hung, Yang, Jan‐Chi, Chen, Jui‐Yuan, Wu, Wen‐Wei
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 7
container_start_page
container_title Small structures
container_volume 5
creator Chen, Yen‐Jung
Lo, Hung‐Yang
Chiu, Chun‐Chien
Wang, Che‐Hung
Yang, Jan‐Chi
Chen, Jui‐Yuan
Wu, Wen‐Wei
description Resistive random‐access memory (RRAM) is considered the next‐generation nonvolatile memory owing to its simplicity, low power consumption, and high storage density. Resistive switching (RS) occurs in a wide range of materials among the transition metal oxides. Herein, an epitaxial ternary metal oxide layer, LaCoO x (LCO), grown on Nb‐doped SrTiO 3 substrates, is utilized as an RRAM device. When voltage is applied, it exhibits excellent RS behavior. More than 900 cycles are obtained, and the retention time reaches up to 10 4  s. To investigate the RS behavior, high‐resolution transmission electron microscopy and atomic‐scale scanning transmission electron microscopy are used to observe the structural evolution and oxygen ion migration in LCO. The structure exhibits a perovskite–brownmillerite topotactic phase transformation from LaCoO 2.5 or LaCoO 2.67 to the LaCoO 3 conductive regions. The reversible transition between the low‐resistance states and high‐resistance states enables the RS mechanism. Additionally, the valence states are confirmed using high‐resolution X‐ray photoelectron spectroscopy. This study not only illustrates the oxygen‐ion migration mechanism of LCO but also demonstrates its suitability for RRAM applications.
doi_str_mv 10.1002/sstr.202400019
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1002_sstr_202400019</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1002_sstr_202400019</sourcerecordid><originalsourceid>FETCH-crossref_primary_10_1002_sstr_2024000193</originalsourceid><addsrcrecordid>eNqVj01OAkEQhTtGE4mwdV0XYKxukJ-lAYwLiQTYt51OjZQy06SqM-jOI3hGT6IkxLhl9V5evrf4jLm2WFhEd6OapXDo-ohox2em5QajUbePA3f-r1-ajurrL-JurR2Ohy3zfJdTxfH782sVw5ZgsQlKsJZQa5mkCplTDVzDgiQ1-saZ4DFM0hO8w5KUNXNDsNpzjhuuX2BOlRzHKTUcSdvmogxbpc4xr0xxP1tPHrpRkqpQ6XfCVZAPb9EfVPxBxf-p9E4-_ABRw1PJ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Atomic‐Scale Phase Transformation in Perovskite LaCoO x Resistive Switching Memristive Devices</title><source>Wiley Online Library Open Access</source><source>DOAJ Directory of Open Access Journals</source><source>Wiley Online Library Journals Frontfile Complete</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Chen, Yen‐Jung ; Lo, Hung‐Yang ; Chiu, Chun‐Chien ; Wang, Che‐Hung ; Yang, Jan‐Chi ; Chen, Jui‐Yuan ; Wu, Wen‐Wei</creator><creatorcontrib>Chen, Yen‐Jung ; Lo, Hung‐Yang ; Chiu, Chun‐Chien ; Wang, Che‐Hung ; Yang, Jan‐Chi ; Chen, Jui‐Yuan ; Wu, Wen‐Wei</creatorcontrib><description>Resistive random‐access memory (RRAM) is considered the next‐generation nonvolatile memory owing to its simplicity, low power consumption, and high storage density. Resistive switching (RS) occurs in a wide range of materials among the transition metal oxides. Herein, an epitaxial ternary metal oxide layer, LaCoO x (LCO), grown on Nb‐doped SrTiO 3 substrates, is utilized as an RRAM device. When voltage is applied, it exhibits excellent RS behavior. More than 900 cycles are obtained, and the retention time reaches up to 10 4  s. To investigate the RS behavior, high‐resolution transmission electron microscopy and atomic‐scale scanning transmission electron microscopy are used to observe the structural evolution and oxygen ion migration in LCO. The structure exhibits a perovskite–brownmillerite topotactic phase transformation from LaCoO 2.5 or LaCoO 2.67 to the LaCoO 3 conductive regions. The reversible transition between the low‐resistance states and high‐resistance states enables the RS mechanism. Additionally, the valence states are confirmed using high‐resolution X‐ray photoelectron spectroscopy. This study not only illustrates the oxygen‐ion migration mechanism of LCO but also demonstrates its suitability for RRAM applications.</description><identifier>ISSN: 2688-4062</identifier><identifier>EISSN: 2688-4062</identifier><identifier>DOI: 10.1002/sstr.202400019</identifier><language>eng</language><ispartof>Small structures, 2024-07, Vol.5 (7)</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-crossref_primary_10_1002_sstr_2024000193</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,27901,27902</link.rule.ids></links><search><creatorcontrib>Chen, Yen‐Jung</creatorcontrib><creatorcontrib>Lo, Hung‐Yang</creatorcontrib><creatorcontrib>Chiu, Chun‐Chien</creatorcontrib><creatorcontrib>Wang, Che‐Hung</creatorcontrib><creatorcontrib>Yang, Jan‐Chi</creatorcontrib><creatorcontrib>Chen, Jui‐Yuan</creatorcontrib><creatorcontrib>Wu, Wen‐Wei</creatorcontrib><title>Atomic‐Scale Phase Transformation in Perovskite LaCoO x Resistive Switching Memristive Devices</title><title>Small structures</title><description>Resistive random‐access memory (RRAM) is considered the next‐generation nonvolatile memory owing to its simplicity, low power consumption, and high storage density. Resistive switching (RS) occurs in a wide range of materials among the transition metal oxides. Herein, an epitaxial ternary metal oxide layer, LaCoO x (LCO), grown on Nb‐doped SrTiO 3 substrates, is utilized as an RRAM device. When voltage is applied, it exhibits excellent RS behavior. More than 900 cycles are obtained, and the retention time reaches up to 10 4  s. To investigate the RS behavior, high‐resolution transmission electron microscopy and atomic‐scale scanning transmission electron microscopy are used to observe the structural evolution and oxygen ion migration in LCO. The structure exhibits a perovskite–brownmillerite topotactic phase transformation from LaCoO 2.5 or LaCoO 2.67 to the LaCoO 3 conductive regions. The reversible transition between the low‐resistance states and high‐resistance states enables the RS mechanism. Additionally, the valence states are confirmed using high‐resolution X‐ray photoelectron spectroscopy. This study not only illustrates the oxygen‐ion migration mechanism of LCO but also demonstrates its suitability for RRAM applications.</description><issn>2688-4062</issn><issn>2688-4062</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqVj01OAkEQhTtGE4mwdV0XYKxukJ-lAYwLiQTYt51OjZQy06SqM-jOI3hGT6IkxLhl9V5evrf4jLm2WFhEd6OapXDo-ohox2em5QajUbePA3f-r1-ajurrL-JurR2Ohy3zfJdTxfH782sVw5ZgsQlKsJZQa5mkCplTDVzDgiQ1-saZ4DFM0hO8w5KUNXNDsNpzjhuuX2BOlRzHKTUcSdvmogxbpc4xr0xxP1tPHrpRkqpQ6XfCVZAPb9EfVPxBxf-p9E4-_ABRw1PJ</recordid><startdate>202407</startdate><enddate>202407</enddate><creator>Chen, Yen‐Jung</creator><creator>Lo, Hung‐Yang</creator><creator>Chiu, Chun‐Chien</creator><creator>Wang, Che‐Hung</creator><creator>Yang, Jan‐Chi</creator><creator>Chen, Jui‐Yuan</creator><creator>Wu, Wen‐Wei</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>202407</creationdate><title>Atomic‐Scale Phase Transformation in Perovskite LaCoO x Resistive Switching Memristive Devices</title><author>Chen, Yen‐Jung ; Lo, Hung‐Yang ; Chiu, Chun‐Chien ; Wang, Che‐Hung ; Yang, Jan‐Chi ; Chen, Jui‐Yuan ; Wu, Wen‐Wei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-crossref_primary_10_1002_sstr_2024000193</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Yen‐Jung</creatorcontrib><creatorcontrib>Lo, Hung‐Yang</creatorcontrib><creatorcontrib>Chiu, Chun‐Chien</creatorcontrib><creatorcontrib>Wang, Che‐Hung</creatorcontrib><creatorcontrib>Yang, Jan‐Chi</creatorcontrib><creatorcontrib>Chen, Jui‐Yuan</creatorcontrib><creatorcontrib>Wu, Wen‐Wei</creatorcontrib><collection>CrossRef</collection><jtitle>Small structures</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Yen‐Jung</au><au>Lo, Hung‐Yang</au><au>Chiu, Chun‐Chien</au><au>Wang, Che‐Hung</au><au>Yang, Jan‐Chi</au><au>Chen, Jui‐Yuan</au><au>Wu, Wen‐Wei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Atomic‐Scale Phase Transformation in Perovskite LaCoO x Resistive Switching Memristive Devices</atitle><jtitle>Small structures</jtitle><date>2024-07</date><risdate>2024</risdate><volume>5</volume><issue>7</issue><issn>2688-4062</issn><eissn>2688-4062</eissn><abstract>Resistive random‐access memory (RRAM) is considered the next‐generation nonvolatile memory owing to its simplicity, low power consumption, and high storage density. Resistive switching (RS) occurs in a wide range of materials among the transition metal oxides. Herein, an epitaxial ternary metal oxide layer, LaCoO x (LCO), grown on Nb‐doped SrTiO 3 substrates, is utilized as an RRAM device. When voltage is applied, it exhibits excellent RS behavior. More than 900 cycles are obtained, and the retention time reaches up to 10 4  s. To investigate the RS behavior, high‐resolution transmission electron microscopy and atomic‐scale scanning transmission electron microscopy are used to observe the structural evolution and oxygen ion migration in LCO. The structure exhibits a perovskite–brownmillerite topotactic phase transformation from LaCoO 2.5 or LaCoO 2.67 to the LaCoO 3 conductive regions. The reversible transition between the low‐resistance states and high‐resistance states enables the RS mechanism. Additionally, the valence states are confirmed using high‐resolution X‐ray photoelectron spectroscopy. This study not only illustrates the oxygen‐ion migration mechanism of LCO but also demonstrates its suitability for RRAM applications.</abstract><doi>10.1002/sstr.202400019</doi></addata></record>
fulltext fulltext
identifier ISSN: 2688-4062
ispartof Small structures, 2024-07, Vol.5 (7)
issn 2688-4062
2688-4062
language eng
recordid cdi_crossref_primary_10_1002_sstr_202400019
source Wiley Online Library Open Access; DOAJ Directory of Open Access Journals; Wiley Online Library Journals Frontfile Complete; EZB-FREE-00999 freely available EZB journals
title Atomic‐Scale Phase Transformation in Perovskite LaCoO x Resistive Switching Memristive Devices
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T00%3A18%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Atomic%E2%80%90Scale%20Phase%20Transformation%20in%20Perovskite%20LaCoO%20x%20Resistive%20Switching%20Memristive%20Devices&rft.jtitle=Small%20structures&rft.au=Chen,%20Yen%E2%80%90Jung&rft.date=2024-07&rft.volume=5&rft.issue=7&rft.issn=2688-4062&rft.eissn=2688-4062&rft_id=info:doi/10.1002/sstr.202400019&rft_dat=%3Ccrossref%3E10_1002_sstr_202400019%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true