Effectiveness of Using Low‐Strength‐Grade Filler Wires for 800 MPa Grade Ultra‐High‐Strength Steels Laser Beam Welds

To match the strength of ultra‐high‐strength steel (850 MPa) during laser beam welding (LBW), various filler wires having under‐matching (520–640 MPa) and comparable‐matching (890 MPa) strength grades are used. All‐weld metals with no filler or fillers comprise low‐temperature transformation microst...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Steel research international 2023-02, Vol.94 (2), p.n/a
Hauptverfasser: Lee, Yoona, Park, Sanghyeon, Choi, Myeonghwan, Park, Jooil, Han, Haksoo, Lee, Kwanghyeon, Kang, Namhyun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 2
container_start_page
container_title Steel research international
container_volume 94
creator Lee, Yoona
Park, Sanghyeon
Choi, Myeonghwan
Park, Jooil
Han, Haksoo
Lee, Kwanghyeon
Kang, Namhyun
description To match the strength of ultra‐high‐strength steel (850 MPa) during laser beam welding (LBW), various filler wires having under‐matching (520–640 MPa) and comparable‐matching (890 MPa) strength grades are used. All‐weld metals with no filler or fillers comprise low‐temperature transformation microstructures such as martensite and bainite, while the base metal (BM) comprises bainite, ferrite, and pearlite. All tensile fractures occur in the BM having the lowest hardness as compared to weld metal and heat‐affected zone. Therefore, the hardness and tensile properties of LBW exhibit insignificant variation regardless of the use of filler and their strength grades. This is because the cooling rate of LBW is fast, where a large dilution of the BM with high hardenability and a small deposition of the under‐matching filler occur at zero gap butt joints. To examine these LBW characteristics, the microstructural and hardness behaviors are successfully discussed through simulation of a continuous‐cooling transformation diagram using JMatPro software and cooling rate T9/3 using Rosenthal's two‐dimensional solution. To obtain the effect of lowering weld metal strength in LBW, it is necessary to increase more deposition of under‐matching filler by creating a gap between BMs, and/or to develop a filler of lower hardenability suitable for LBW. To match the strength of UHSSs during laser welding, filler wires having various strength grades are used. The microstructure and mechanical properties of welds exhibit insignificant variation regardless of various strength grades filler wire. To examine these laser welding characteristics, the microstructural and hardness behaviors are successfully discussed through the continuous‐cooling transformation diagram and the cooling rate using Rosenthal's solution.
doi_str_mv 10.1002/srin.202200248
format Article
fullrecord <record><control><sourceid>wiley_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_srin_202200248</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>SRIN202200248</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2898-e21584f9166bec0a9a2413c2335c78f520fcb943786a88692278d6efecf78e8a3</originalsourceid><addsrcrecordid>eNqFkEtLAzEUhYMoWGq3rvMHpuYxk8kstfQF4wNrqbshTW_ayHRGksHSjXTrzt_YX2JKRd15N_deON-BcxC6pKRLCWFX3tmqywhj4YnlCWpRKbKIx_HzabgFpREXkp-jjvcvJAyXUqRxC733jQHd2DeowHtcGzz1tlrivN7sd5-TxkG1bFbhHDq1ADywZQkOz6wDj03tsCRkv_u4fVD4KJiWjVNBPrLL1R8DPGkASo9z5QN-A2qNZ1Au_AU6M6r00PnebTQd9J96oyi_H45713mkmcxkBIwmMjYZFWIOmqhMsZhyzThPdCpNwojR8yzmqRQqBMsYS-VCQEhmUglS8TbqHn21q713YIpXZ9fKbQtKikOBxaHA4qfAAGRHYGNL2P6jLiaP47tf9gsOkXoJ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Effectiveness of Using Low‐Strength‐Grade Filler Wires for 800 MPa Grade Ultra‐High‐Strength Steels Laser Beam Welds</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Lee, Yoona ; Park, Sanghyeon ; Choi, Myeonghwan ; Park, Jooil ; Han, Haksoo ; Lee, Kwanghyeon ; Kang, Namhyun</creator><creatorcontrib>Lee, Yoona ; Park, Sanghyeon ; Choi, Myeonghwan ; Park, Jooil ; Han, Haksoo ; Lee, Kwanghyeon ; Kang, Namhyun</creatorcontrib><description>To match the strength of ultra‐high‐strength steel (850 MPa) during laser beam welding (LBW), various filler wires having under‐matching (520–640 MPa) and comparable‐matching (890 MPa) strength grades are used. All‐weld metals with no filler or fillers comprise low‐temperature transformation microstructures such as martensite and bainite, while the base metal (BM) comprises bainite, ferrite, and pearlite. All tensile fractures occur in the BM having the lowest hardness as compared to weld metal and heat‐affected zone. Therefore, the hardness and tensile properties of LBW exhibit insignificant variation regardless of the use of filler and their strength grades. This is because the cooling rate of LBW is fast, where a large dilution of the BM with high hardenability and a small deposition of the under‐matching filler occur at zero gap butt joints. To examine these LBW characteristics, the microstructural and hardness behaviors are successfully discussed through simulation of a continuous‐cooling transformation diagram using JMatPro software and cooling rate T9/3 using Rosenthal's two‐dimensional solution. To obtain the effect of lowering weld metal strength in LBW, it is necessary to increase more deposition of under‐matching filler by creating a gap between BMs, and/or to develop a filler of lower hardenability suitable for LBW. To match the strength of UHSSs during laser welding, filler wires having various strength grades are used. The microstructure and mechanical properties of welds exhibit insignificant variation regardless of various strength grades filler wire. To examine these laser welding characteristics, the microstructural and hardness behaviors are successfully discussed through the continuous‐cooling transformation diagram and the cooling rate using Rosenthal's solution.</description><identifier>ISSN: 1611-3683</identifier><identifier>EISSN: 1869-344X</identifier><identifier>DOI: 10.1002/srin.202200248</identifier><language>eng</language><subject>continuous-cooling transformation (CCT) diagrams ; laser beam welding ; microstructures ; ultra-high-strength steels ; under-matching filler wires</subject><ispartof>Steel research international, 2023-02, Vol.94 (2), p.n/a</ispartof><rights>2022 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2898-e21584f9166bec0a9a2413c2335c78f520fcb943786a88692278d6efecf78e8a3</citedby><cites>FETCH-LOGICAL-c2898-e21584f9166bec0a9a2413c2335c78f520fcb943786a88692278d6efecf78e8a3</cites><orcidid>0000-0002-1330-069X ; 0000-0001-7547-759X ; 0000-0002-9460-5128</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsrin.202200248$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsrin.202200248$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids></links><search><creatorcontrib>Lee, Yoona</creatorcontrib><creatorcontrib>Park, Sanghyeon</creatorcontrib><creatorcontrib>Choi, Myeonghwan</creatorcontrib><creatorcontrib>Park, Jooil</creatorcontrib><creatorcontrib>Han, Haksoo</creatorcontrib><creatorcontrib>Lee, Kwanghyeon</creatorcontrib><creatorcontrib>Kang, Namhyun</creatorcontrib><title>Effectiveness of Using Low‐Strength‐Grade Filler Wires for 800 MPa Grade Ultra‐High‐Strength Steels Laser Beam Welds</title><title>Steel research international</title><description>To match the strength of ultra‐high‐strength steel (850 MPa) during laser beam welding (LBW), various filler wires having under‐matching (520–640 MPa) and comparable‐matching (890 MPa) strength grades are used. All‐weld metals with no filler or fillers comprise low‐temperature transformation microstructures such as martensite and bainite, while the base metal (BM) comprises bainite, ferrite, and pearlite. All tensile fractures occur in the BM having the lowest hardness as compared to weld metal and heat‐affected zone. Therefore, the hardness and tensile properties of LBW exhibit insignificant variation regardless of the use of filler and their strength grades. This is because the cooling rate of LBW is fast, where a large dilution of the BM with high hardenability and a small deposition of the under‐matching filler occur at zero gap butt joints. To examine these LBW characteristics, the microstructural and hardness behaviors are successfully discussed through simulation of a continuous‐cooling transformation diagram using JMatPro software and cooling rate T9/3 using Rosenthal's two‐dimensional solution. To obtain the effect of lowering weld metal strength in LBW, it is necessary to increase more deposition of under‐matching filler by creating a gap between BMs, and/or to develop a filler of lower hardenability suitable for LBW. To match the strength of UHSSs during laser welding, filler wires having various strength grades are used. The microstructure and mechanical properties of welds exhibit insignificant variation regardless of various strength grades filler wire. To examine these laser welding characteristics, the microstructural and hardness behaviors are successfully discussed through the continuous‐cooling transformation diagram and the cooling rate using Rosenthal's solution.</description><subject>continuous-cooling transformation (CCT) diagrams</subject><subject>laser beam welding</subject><subject>microstructures</subject><subject>ultra-high-strength steels</subject><subject>under-matching filler wires</subject><issn>1611-3683</issn><issn>1869-344X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqFkEtLAzEUhYMoWGq3rvMHpuYxk8kstfQF4wNrqbshTW_ayHRGksHSjXTrzt_YX2JKRd15N_deON-BcxC6pKRLCWFX3tmqywhj4YnlCWpRKbKIx_HzabgFpREXkp-jjvcvJAyXUqRxC733jQHd2DeowHtcGzz1tlrivN7sd5-TxkG1bFbhHDq1ADywZQkOz6wDj03tsCRkv_u4fVD4KJiWjVNBPrLL1R8DPGkASo9z5QN-A2qNZ1Au_AU6M6r00PnebTQd9J96oyi_H45713mkmcxkBIwmMjYZFWIOmqhMsZhyzThPdCpNwojR8yzmqRQqBMsYS-VCQEhmUglS8TbqHn21q713YIpXZ9fKbQtKikOBxaHA4qfAAGRHYGNL2P6jLiaP47tf9gsOkXoJ</recordid><startdate>202302</startdate><enddate>202302</enddate><creator>Lee, Yoona</creator><creator>Park, Sanghyeon</creator><creator>Choi, Myeonghwan</creator><creator>Park, Jooil</creator><creator>Han, Haksoo</creator><creator>Lee, Kwanghyeon</creator><creator>Kang, Namhyun</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-1330-069X</orcidid><orcidid>https://orcid.org/0000-0001-7547-759X</orcidid><orcidid>https://orcid.org/0000-0002-9460-5128</orcidid></search><sort><creationdate>202302</creationdate><title>Effectiveness of Using Low‐Strength‐Grade Filler Wires for 800 MPa Grade Ultra‐High‐Strength Steels Laser Beam Welds</title><author>Lee, Yoona ; Park, Sanghyeon ; Choi, Myeonghwan ; Park, Jooil ; Han, Haksoo ; Lee, Kwanghyeon ; Kang, Namhyun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2898-e21584f9166bec0a9a2413c2335c78f520fcb943786a88692278d6efecf78e8a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>continuous-cooling transformation (CCT) diagrams</topic><topic>laser beam welding</topic><topic>microstructures</topic><topic>ultra-high-strength steels</topic><topic>under-matching filler wires</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Yoona</creatorcontrib><creatorcontrib>Park, Sanghyeon</creatorcontrib><creatorcontrib>Choi, Myeonghwan</creatorcontrib><creatorcontrib>Park, Jooil</creatorcontrib><creatorcontrib>Han, Haksoo</creatorcontrib><creatorcontrib>Lee, Kwanghyeon</creatorcontrib><creatorcontrib>Kang, Namhyun</creatorcontrib><collection>CrossRef</collection><jtitle>Steel research international</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Yoona</au><au>Park, Sanghyeon</au><au>Choi, Myeonghwan</au><au>Park, Jooil</au><au>Han, Haksoo</au><au>Lee, Kwanghyeon</au><au>Kang, Namhyun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effectiveness of Using Low‐Strength‐Grade Filler Wires for 800 MPa Grade Ultra‐High‐Strength Steels Laser Beam Welds</atitle><jtitle>Steel research international</jtitle><date>2023-02</date><risdate>2023</risdate><volume>94</volume><issue>2</issue><epage>n/a</epage><issn>1611-3683</issn><eissn>1869-344X</eissn><abstract>To match the strength of ultra‐high‐strength steel (850 MPa) during laser beam welding (LBW), various filler wires having under‐matching (520–640 MPa) and comparable‐matching (890 MPa) strength grades are used. All‐weld metals with no filler or fillers comprise low‐temperature transformation microstructures such as martensite and bainite, while the base metal (BM) comprises bainite, ferrite, and pearlite. All tensile fractures occur in the BM having the lowest hardness as compared to weld metal and heat‐affected zone. Therefore, the hardness and tensile properties of LBW exhibit insignificant variation regardless of the use of filler and their strength grades. This is because the cooling rate of LBW is fast, where a large dilution of the BM with high hardenability and a small deposition of the under‐matching filler occur at zero gap butt joints. To examine these LBW characteristics, the microstructural and hardness behaviors are successfully discussed through simulation of a continuous‐cooling transformation diagram using JMatPro software and cooling rate T9/3 using Rosenthal's two‐dimensional solution. To obtain the effect of lowering weld metal strength in LBW, it is necessary to increase more deposition of under‐matching filler by creating a gap between BMs, and/or to develop a filler of lower hardenability suitable for LBW. To match the strength of UHSSs during laser welding, filler wires having various strength grades are used. The microstructure and mechanical properties of welds exhibit insignificant variation regardless of various strength grades filler wire. To examine these laser welding characteristics, the microstructural and hardness behaviors are successfully discussed through the continuous‐cooling transformation diagram and the cooling rate using Rosenthal's solution.</abstract><doi>10.1002/srin.202200248</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-1330-069X</orcidid><orcidid>https://orcid.org/0000-0001-7547-759X</orcidid><orcidid>https://orcid.org/0000-0002-9460-5128</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1611-3683
ispartof Steel research international, 2023-02, Vol.94 (2), p.n/a
issn 1611-3683
1869-344X
language eng
recordid cdi_crossref_primary_10_1002_srin_202200248
source Wiley Online Library Journals Frontfile Complete
subjects continuous-cooling transformation (CCT) diagrams
laser beam welding
microstructures
ultra-high-strength steels
under-matching filler wires
title Effectiveness of Using Low‐Strength‐Grade Filler Wires for 800 MPa Grade Ultra‐High‐Strength Steels Laser Beam Welds
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T14%3A41%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effectiveness%20of%20Using%20Low%E2%80%90Strength%E2%80%90Grade%20Filler%20Wires%20for%20800%E2%80%89MPa%20Grade%20Ultra%E2%80%90High%E2%80%90Strength%20Steels%20Laser%20Beam%20Welds&rft.jtitle=Steel%20research%20international&rft.au=Lee,%20Yoona&rft.date=2023-02&rft.volume=94&rft.issue=2&rft.epage=n/a&rft.issn=1611-3683&rft.eissn=1869-344X&rft_id=info:doi/10.1002/srin.202200248&rft_dat=%3Cwiley_cross%3ESRIN202200248%3C/wiley_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true