Reputation‐based partition scheme for IoT security

With the popularity of smart terminals, such as the Internet of Things, crowdsensing is an emerging data aggregation paradigm, which plays a pivotal role in data‐driven applications. There are some key issues in the development of crowdsensing such as platform security and privacy protection. As the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Security and privacy 2023-05, Vol.6 (3), p.n/a
Hauptverfasser: Chen, Zhikui, Haider, Muhammad Zeeshan, Luo, Naiwen, Yu, Shuo, Yuan, Xu, Zhang, Yaochen, Noreen, Tayyaba
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 3
container_start_page
container_title Security and privacy
container_volume 6
creator Chen, Zhikui
Haider, Muhammad Zeeshan
Luo, Naiwen
Yu, Shuo
Yuan, Xu
Zhang, Yaochen
Noreen, Tayyaba
description With the popularity of smart terminals, such as the Internet of Things, crowdsensing is an emerging data aggregation paradigm, which plays a pivotal role in data‐driven applications. There are some key issues in the development of crowdsensing such as platform security and privacy protection. As the crowdsensing is usually managed by a centralized platform, centralized management will bring various security vulnerabilities and scalability issues. To solve these issues, an effective reputation‐based partition scheme (RSPC) is proposed in this article. The partition scheme calculates the optimal partition size by combining the node reputation value and divides the node into several disjoint partitions according to the node reputation value. By selecting the appropriate partition size, RSPC provides a mechanism to ensure that each partition is valid, as long as the maximum permissible threshold for the failed node is observed. At the same time, the RSPC reorganizes the network periodically to avoid partition attacks. In addition, for cross‐partition transactions, this paper innovatively proposes a four‐stage confirmation protocol to ensure the efficient and safe completion of cross‐partition transactions. Finally, experiments show that RSPC improves scalability, low latency, and high throughput for crowdsensing.
doi_str_mv 10.1002/spy2.287
format Article
fullrecord <record><control><sourceid>wiley_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_spy2_287</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>SPY2287</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1567-78a1b076ded03f33765c86e5b4de433edeecac8d43551671fd3f6981fa31ac373</originalsourceid><addsrcrecordid>eNp1j8tKAzEYhYMoWNqCjzBLN6lJ_smlSyleCgWL1oWrkEn-4EjrDMkUmZ2P4DP6JHaoCzeuzuHwceAj5IKzGWdMXOW2FzNh9AkZiVJLqrSQp3_6OZnm_MYY40aBmJsRKR-x3Xeuq5v378-vymUMRetSVw9Lkf0r7rCITSqWzabI6Pep7voJOYtum3H6m2PyfHuzWdzT1cPdcnG9op5Lpak2jldMq4CBQQTQSnqjUFZlwBIAA6J33oQSpORK8xggqrnh0QF3HjSMyeXx16cm54TRtqneudRbzuwgbAdhexA-oPSIftRb7P_l7NP6RQz8D_6bWCY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Reputation‐based partition scheme for IoT security</title><source>Wiley Online Library All Journals</source><creator>Chen, Zhikui ; Haider, Muhammad Zeeshan ; Luo, Naiwen ; Yu, Shuo ; Yuan, Xu ; Zhang, Yaochen ; Noreen, Tayyaba</creator><creatorcontrib>Chen, Zhikui ; Haider, Muhammad Zeeshan ; Luo, Naiwen ; Yu, Shuo ; Yuan, Xu ; Zhang, Yaochen ; Noreen, Tayyaba</creatorcontrib><description>With the popularity of smart terminals, such as the Internet of Things, crowdsensing is an emerging data aggregation paradigm, which plays a pivotal role in data‐driven applications. There are some key issues in the development of crowdsensing such as platform security and privacy protection. As the crowdsensing is usually managed by a centralized platform, centralized management will bring various security vulnerabilities and scalability issues. To solve these issues, an effective reputation‐based partition scheme (RSPC) is proposed in this article. The partition scheme calculates the optimal partition size by combining the node reputation value and divides the node into several disjoint partitions according to the node reputation value. By selecting the appropriate partition size, RSPC provides a mechanism to ensure that each partition is valid, as long as the maximum permissible threshold for the failed node is observed. At the same time, the RSPC reorganizes the network periodically to avoid partition attacks. In addition, for cross‐partition transactions, this paper innovatively proposes a four‐stage confirmation protocol to ensure the efficient and safe completion of cross‐partition transactions. Finally, experiments show that RSPC improves scalability, low latency, and high throughput for crowdsensing.</description><identifier>ISSN: 2475-6725</identifier><identifier>EISSN: 2475-6725</identifier><identifier>DOI: 10.1002/spy2.287</identifier><language>eng</language><publisher>Boston, USA: Wiley Periodicals, Inc</publisher><subject>big data security issues ; data protection in emerging scenarios ; Internet of things</subject><ispartof>Security and privacy, 2023-05, Vol.6 (3), p.n/a</ispartof><rights>2022 John Wiley &amp; Sons Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1567-78a1b076ded03f33765c86e5b4de433edeecac8d43551671fd3f6981fa31ac373</cites><orcidid>0000-0003-1124-9509 ; 0000-0002-9209-2189</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fspy2.287$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fspy2.287$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27922,27923,45572,45573</link.rule.ids></links><search><creatorcontrib>Chen, Zhikui</creatorcontrib><creatorcontrib>Haider, Muhammad Zeeshan</creatorcontrib><creatorcontrib>Luo, Naiwen</creatorcontrib><creatorcontrib>Yu, Shuo</creatorcontrib><creatorcontrib>Yuan, Xu</creatorcontrib><creatorcontrib>Zhang, Yaochen</creatorcontrib><creatorcontrib>Noreen, Tayyaba</creatorcontrib><title>Reputation‐based partition scheme for IoT security</title><title>Security and privacy</title><description>With the popularity of smart terminals, such as the Internet of Things, crowdsensing is an emerging data aggregation paradigm, which plays a pivotal role in data‐driven applications. There are some key issues in the development of crowdsensing such as platform security and privacy protection. As the crowdsensing is usually managed by a centralized platform, centralized management will bring various security vulnerabilities and scalability issues. To solve these issues, an effective reputation‐based partition scheme (RSPC) is proposed in this article. The partition scheme calculates the optimal partition size by combining the node reputation value and divides the node into several disjoint partitions according to the node reputation value. By selecting the appropriate partition size, RSPC provides a mechanism to ensure that each partition is valid, as long as the maximum permissible threshold for the failed node is observed. At the same time, the RSPC reorganizes the network periodically to avoid partition attacks. In addition, for cross‐partition transactions, this paper innovatively proposes a four‐stage confirmation protocol to ensure the efficient and safe completion of cross‐partition transactions. Finally, experiments show that RSPC improves scalability, low latency, and high throughput for crowdsensing.</description><subject>big data security issues</subject><subject>data protection in emerging scenarios</subject><subject>Internet of things</subject><issn>2475-6725</issn><issn>2475-6725</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1j8tKAzEYhYMoWNqCjzBLN6lJ_smlSyleCgWL1oWrkEn-4EjrDMkUmZ2P4DP6JHaoCzeuzuHwceAj5IKzGWdMXOW2FzNh9AkZiVJLqrSQp3_6OZnm_MYY40aBmJsRKR-x3Xeuq5v378-vymUMRetSVw9Lkf0r7rCITSqWzabI6Pep7voJOYtum3H6m2PyfHuzWdzT1cPdcnG9op5Lpak2jldMq4CBQQTQSnqjUFZlwBIAA6J33oQSpORK8xggqrnh0QF3HjSMyeXx16cm54TRtqneudRbzuwgbAdhexA-oPSIftRb7P_l7NP6RQz8D_6bWCY</recordid><startdate>202305</startdate><enddate>202305</enddate><creator>Chen, Zhikui</creator><creator>Haider, Muhammad Zeeshan</creator><creator>Luo, Naiwen</creator><creator>Yu, Shuo</creator><creator>Yuan, Xu</creator><creator>Zhang, Yaochen</creator><creator>Noreen, Tayyaba</creator><general>Wiley Periodicals, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-1124-9509</orcidid><orcidid>https://orcid.org/0000-0002-9209-2189</orcidid></search><sort><creationdate>202305</creationdate><title>Reputation‐based partition scheme for IoT security</title><author>Chen, Zhikui ; Haider, Muhammad Zeeshan ; Luo, Naiwen ; Yu, Shuo ; Yuan, Xu ; Zhang, Yaochen ; Noreen, Tayyaba</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1567-78a1b076ded03f33765c86e5b4de433edeecac8d43551671fd3f6981fa31ac373</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>big data security issues</topic><topic>data protection in emerging scenarios</topic><topic>Internet of things</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Zhikui</creatorcontrib><creatorcontrib>Haider, Muhammad Zeeshan</creatorcontrib><creatorcontrib>Luo, Naiwen</creatorcontrib><creatorcontrib>Yu, Shuo</creatorcontrib><creatorcontrib>Yuan, Xu</creatorcontrib><creatorcontrib>Zhang, Yaochen</creatorcontrib><creatorcontrib>Noreen, Tayyaba</creatorcontrib><collection>CrossRef</collection><jtitle>Security and privacy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Zhikui</au><au>Haider, Muhammad Zeeshan</au><au>Luo, Naiwen</au><au>Yu, Shuo</au><au>Yuan, Xu</au><au>Zhang, Yaochen</au><au>Noreen, Tayyaba</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reputation‐based partition scheme for IoT security</atitle><jtitle>Security and privacy</jtitle><date>2023-05</date><risdate>2023</risdate><volume>6</volume><issue>3</issue><epage>n/a</epage><issn>2475-6725</issn><eissn>2475-6725</eissn><abstract>With the popularity of smart terminals, such as the Internet of Things, crowdsensing is an emerging data aggregation paradigm, which plays a pivotal role in data‐driven applications. There are some key issues in the development of crowdsensing such as platform security and privacy protection. As the crowdsensing is usually managed by a centralized platform, centralized management will bring various security vulnerabilities and scalability issues. To solve these issues, an effective reputation‐based partition scheme (RSPC) is proposed in this article. The partition scheme calculates the optimal partition size by combining the node reputation value and divides the node into several disjoint partitions according to the node reputation value. By selecting the appropriate partition size, RSPC provides a mechanism to ensure that each partition is valid, as long as the maximum permissible threshold for the failed node is observed. At the same time, the RSPC reorganizes the network periodically to avoid partition attacks. In addition, for cross‐partition transactions, this paper innovatively proposes a four‐stage confirmation protocol to ensure the efficient and safe completion of cross‐partition transactions. Finally, experiments show that RSPC improves scalability, low latency, and high throughput for crowdsensing.</abstract><cop>Boston, USA</cop><pub>Wiley Periodicals, Inc</pub><doi>10.1002/spy2.287</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0003-1124-9509</orcidid><orcidid>https://orcid.org/0000-0002-9209-2189</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2475-6725
ispartof Security and privacy, 2023-05, Vol.6 (3), p.n/a
issn 2475-6725
2475-6725
language eng
recordid cdi_crossref_primary_10_1002_spy2_287
source Wiley Online Library All Journals
subjects big data security issues
data protection in emerging scenarios
Internet of things
title Reputation‐based partition scheme for IoT security
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T12%3A13%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reputation%E2%80%90based%20partition%20scheme%20for%20IoT%20security&rft.jtitle=Security%20and%20privacy&rft.au=Chen,%20Zhikui&rft.date=2023-05&rft.volume=6&rft.issue=3&rft.epage=n/a&rft.issn=2475-6725&rft.eissn=2475-6725&rft_id=info:doi/10.1002/spy2.287&rft_dat=%3Cwiley_cross%3ESPY2287%3C/wiley_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true