A machine learning framework for domain generating algorithm based malware detection

Real‐time detection of domain names that are generated using the domain generating algorithms (DGA) is a challenging cyber security challenge. Traditional malware control methods, such as blacklisting, are insufficient to handle DGA threats. In this paper, a machine learning framework for identifyin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Security and privacy 2020-11, Vol.3 (6), p.n/a
Hauptverfasser: G. P., Akhila, R., Gayathri, S., Keerthana, Gladston, Angelin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 6
container_start_page
container_title Security and privacy
container_volume 3
creator G. P., Akhila
R., Gayathri
S., Keerthana
Gladston, Angelin
description Real‐time detection of domain names that are generated using the domain generating algorithms (DGA) is a challenging cyber security challenge. Traditional malware control methods, such as blacklisting, are insufficient to handle DGA threats. In this paper, a machine learning framework for identifying and detecting DGA domains is proposed to alleviate the threat. The proposed machine learning framework consists of a two‐level model. In the two‐level model, the DGA domains are classified apart from normal domains and then the clustering method is used to identify the algorithms that generate those DGA domains.
doi_str_mv 10.1002/spy2.127
format Article
fullrecord <record><control><sourceid>wiley_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_spy2_127</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>SPY2127</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2297-5ac9e54f1fcb86d2c8e2dc5f7750e4e77e008ed21ae65b4c6609d968bc4c312e3</originalsourceid><addsrcrecordid>eNp1kL1qwzAYRUVpoSEN9BE0dnEqfbYkewyhfxBooenQycjSp0Stf4JkMH772qRDl073wj3c4RByy9maMwb38TTCmoO6IAvIlEikAnH5p1-TVYxfjDGeyxSKfEH2G9poc_Qt0hp1aH17oC7oBocufFPXBWq7RvuWHrDFoPt51_WhC74_NrTSEe10UA86ILXYo-l9196QK6friKvfXJKPx4f99jnZvT69bDe7xAAUKhHaFCgyx52pcmnB5AjWCKeUYJihUshYjha4RimqzEjJClvIvDKZSTlguiR3518TuhgDuvIUfKPDWHJWzkLKWUg5CZnQ5IwOvsbxX658f_uEmf8B9rljUQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A machine learning framework for domain generating algorithm based malware detection</title><source>Access via Wiley Online Library</source><creator>G. P., Akhila ; R., Gayathri ; S., Keerthana ; Gladston, Angelin</creator><creatorcontrib>G. P., Akhila ; R., Gayathri ; S., Keerthana ; Gladston, Angelin</creatorcontrib><description>Real‐time detection of domain names that are generated using the domain generating algorithms (DGA) is a challenging cyber security challenge. Traditional malware control methods, such as blacklisting, are insufficient to handle DGA threats. In this paper, a machine learning framework for identifying and detecting DGA domains is proposed to alleviate the threat. The proposed machine learning framework consists of a two‐level model. In the two‐level model, the DGA domains are classified apart from normal domains and then the clustering method is used to identify the algorithms that generate those DGA domains.</description><identifier>ISSN: 2475-6725</identifier><identifier>EISSN: 2475-6725</identifier><identifier>DOI: 10.1002/spy2.127</identifier><language>eng</language><publisher>Boston, USA: Wiley Periodicals, Inc</publisher><subject>density‐based spatial clustering of applications with noise ; DGA ; gradient boosting tree ; J48 ; Jaccard‐index ; logistic regression ; machine learning ; malware ; n‐grams entropy ordering points to identify the clustering</subject><ispartof>Security and privacy, 2020-11, Vol.3 (6), p.n/a</ispartof><rights>2020 John Wiley &amp; Sons Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2297-5ac9e54f1fcb86d2c8e2dc5f7750e4e77e008ed21ae65b4c6609d968bc4c312e3</citedby><cites>FETCH-LOGICAL-c2297-5ac9e54f1fcb86d2c8e2dc5f7750e4e77e008ed21ae65b4c6609d968bc4c312e3</cites><orcidid>0000-0003-3899-2474</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fspy2.127$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fspy2.127$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>G. P., Akhila</creatorcontrib><creatorcontrib>R., Gayathri</creatorcontrib><creatorcontrib>S., Keerthana</creatorcontrib><creatorcontrib>Gladston, Angelin</creatorcontrib><title>A machine learning framework for domain generating algorithm based malware detection</title><title>Security and privacy</title><description>Real‐time detection of domain names that are generated using the domain generating algorithms (DGA) is a challenging cyber security challenge. Traditional malware control methods, such as blacklisting, are insufficient to handle DGA threats. In this paper, a machine learning framework for identifying and detecting DGA domains is proposed to alleviate the threat. The proposed machine learning framework consists of a two‐level model. In the two‐level model, the DGA domains are classified apart from normal domains and then the clustering method is used to identify the algorithms that generate those DGA domains.</description><subject>density‐based spatial clustering of applications with noise</subject><subject>DGA</subject><subject>gradient boosting tree</subject><subject>J48</subject><subject>Jaccard‐index</subject><subject>logistic regression</subject><subject>machine learning</subject><subject>malware</subject><subject>n‐grams entropy ordering points to identify the clustering</subject><issn>2475-6725</issn><issn>2475-6725</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kL1qwzAYRUVpoSEN9BE0dnEqfbYkewyhfxBooenQycjSp0Stf4JkMH772qRDl073wj3c4RByy9maMwb38TTCmoO6IAvIlEikAnH5p1-TVYxfjDGeyxSKfEH2G9poc_Qt0hp1aH17oC7oBocufFPXBWq7RvuWHrDFoPt51_WhC74_NrTSEe10UA86ILXYo-l9196QK6friKvfXJKPx4f99jnZvT69bDe7xAAUKhHaFCgyx52pcmnB5AjWCKeUYJihUshYjha4RimqzEjJClvIvDKZSTlguiR3518TuhgDuvIUfKPDWHJWzkLKWUg5CZnQ5IwOvsbxX658f_uEmf8B9rljUQ</recordid><startdate>202011</startdate><enddate>202011</enddate><creator>G. P., Akhila</creator><creator>R., Gayathri</creator><creator>S., Keerthana</creator><creator>Gladston, Angelin</creator><general>Wiley Periodicals, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-3899-2474</orcidid></search><sort><creationdate>202011</creationdate><title>A machine learning framework for domain generating algorithm based malware detection</title><author>G. P., Akhila ; R., Gayathri ; S., Keerthana ; Gladston, Angelin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2297-5ac9e54f1fcb86d2c8e2dc5f7750e4e77e008ed21ae65b4c6609d968bc4c312e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>density‐based spatial clustering of applications with noise</topic><topic>DGA</topic><topic>gradient boosting tree</topic><topic>J48</topic><topic>Jaccard‐index</topic><topic>logistic regression</topic><topic>machine learning</topic><topic>malware</topic><topic>n‐grams entropy ordering points to identify the clustering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>G. P., Akhila</creatorcontrib><creatorcontrib>R., Gayathri</creatorcontrib><creatorcontrib>S., Keerthana</creatorcontrib><creatorcontrib>Gladston, Angelin</creatorcontrib><collection>CrossRef</collection><jtitle>Security and privacy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>G. P., Akhila</au><au>R., Gayathri</au><au>S., Keerthana</au><au>Gladston, Angelin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A machine learning framework for domain generating algorithm based malware detection</atitle><jtitle>Security and privacy</jtitle><date>2020-11</date><risdate>2020</risdate><volume>3</volume><issue>6</issue><epage>n/a</epage><issn>2475-6725</issn><eissn>2475-6725</eissn><abstract>Real‐time detection of domain names that are generated using the domain generating algorithms (DGA) is a challenging cyber security challenge. Traditional malware control methods, such as blacklisting, are insufficient to handle DGA threats. In this paper, a machine learning framework for identifying and detecting DGA domains is proposed to alleviate the threat. The proposed machine learning framework consists of a two‐level model. In the two‐level model, the DGA domains are classified apart from normal domains and then the clustering method is used to identify the algorithms that generate those DGA domains.</abstract><cop>Boston, USA</cop><pub>Wiley Periodicals, Inc</pub><doi>10.1002/spy2.127</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0003-3899-2474</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2475-6725
ispartof Security and privacy, 2020-11, Vol.3 (6), p.n/a
issn 2475-6725
2475-6725
language eng
recordid cdi_crossref_primary_10_1002_spy2_127
source Access via Wiley Online Library
subjects density‐based spatial clustering of applications with noise
DGA
gradient boosting tree
J48
Jaccard‐index
logistic regression
machine learning
malware
n‐grams entropy ordering points to identify the clustering
title A machine learning framework for domain generating algorithm based malware detection
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T00%3A14%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20machine%20learning%20framework%20for%20domain%20generating%20algorithm%20based%20malware%20detection&rft.jtitle=Security%20and%20privacy&rft.au=G.%20P.,%20Akhila&rft.date=2020-11&rft.volume=3&rft.issue=6&rft.epage=n/a&rft.issn=2475-6725&rft.eissn=2475-6725&rft_id=info:doi/10.1002/spy2.127&rft_dat=%3Cwiley_cross%3ESPY2127%3C/wiley_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true