A machine learning framework for domain generating algorithm based malware detection
Real‐time detection of domain names that are generated using the domain generating algorithms (DGA) is a challenging cyber security challenge. Traditional malware control methods, such as blacklisting, are insufficient to handle DGA threats. In this paper, a machine learning framework for identifyin...
Gespeichert in:
Veröffentlicht in: | Security and privacy 2020-11, Vol.3 (6), p.n/a |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 6 |
container_start_page | |
container_title | Security and privacy |
container_volume | 3 |
creator | G. P., Akhila R., Gayathri S., Keerthana Gladston, Angelin |
description | Real‐time detection of domain names that are generated using the domain generating algorithms (DGA) is a challenging cyber security challenge. Traditional malware control methods, such as blacklisting, are insufficient to handle DGA threats. In this paper, a machine learning framework for identifying and detecting DGA domains is proposed to alleviate the threat. The proposed machine learning framework consists of a two‐level model. In the two‐level model, the DGA domains are classified apart from normal domains and then the clustering method is used to identify the algorithms that generate those DGA domains. |
doi_str_mv | 10.1002/spy2.127 |
format | Article |
fullrecord | <record><control><sourceid>wiley_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_spy2_127</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>SPY2127</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2297-5ac9e54f1fcb86d2c8e2dc5f7750e4e77e008ed21ae65b4c6609d968bc4c312e3</originalsourceid><addsrcrecordid>eNp1kL1qwzAYRUVpoSEN9BE0dnEqfbYkewyhfxBooenQycjSp0Stf4JkMH772qRDl073wj3c4RByy9maMwb38TTCmoO6IAvIlEikAnH5p1-TVYxfjDGeyxSKfEH2G9poc_Qt0hp1aH17oC7oBocufFPXBWq7RvuWHrDFoPt51_WhC74_NrTSEe10UA86ILXYo-l9196QK6friKvfXJKPx4f99jnZvT69bDe7xAAUKhHaFCgyx52pcmnB5AjWCKeUYJihUshYjha4RimqzEjJClvIvDKZSTlguiR3518TuhgDuvIUfKPDWHJWzkLKWUg5CZnQ5IwOvsbxX658f_uEmf8B9rljUQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A machine learning framework for domain generating algorithm based malware detection</title><source>Access via Wiley Online Library</source><creator>G. P., Akhila ; R., Gayathri ; S., Keerthana ; Gladston, Angelin</creator><creatorcontrib>G. P., Akhila ; R., Gayathri ; S., Keerthana ; Gladston, Angelin</creatorcontrib><description>Real‐time detection of domain names that are generated using the domain generating algorithms (DGA) is a challenging cyber security challenge. Traditional malware control methods, such as blacklisting, are insufficient to handle DGA threats. In this paper, a machine learning framework for identifying and detecting DGA domains is proposed to alleviate the threat. The proposed machine learning framework consists of a two‐level model. In the two‐level model, the DGA domains are classified apart from normal domains and then the clustering method is used to identify the algorithms that generate those DGA domains.</description><identifier>ISSN: 2475-6725</identifier><identifier>EISSN: 2475-6725</identifier><identifier>DOI: 10.1002/spy2.127</identifier><language>eng</language><publisher>Boston, USA: Wiley Periodicals, Inc</publisher><subject>density‐based spatial clustering of applications with noise ; DGA ; gradient boosting tree ; J48 ; Jaccard‐index ; logistic regression ; machine learning ; malware ; n‐grams entropy ordering points to identify the clustering</subject><ispartof>Security and privacy, 2020-11, Vol.3 (6), p.n/a</ispartof><rights>2020 John Wiley & Sons Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2297-5ac9e54f1fcb86d2c8e2dc5f7750e4e77e008ed21ae65b4c6609d968bc4c312e3</citedby><cites>FETCH-LOGICAL-c2297-5ac9e54f1fcb86d2c8e2dc5f7750e4e77e008ed21ae65b4c6609d968bc4c312e3</cites><orcidid>0000-0003-3899-2474</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fspy2.127$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fspy2.127$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>G. P., Akhila</creatorcontrib><creatorcontrib>R., Gayathri</creatorcontrib><creatorcontrib>S., Keerthana</creatorcontrib><creatorcontrib>Gladston, Angelin</creatorcontrib><title>A machine learning framework for domain generating algorithm based malware detection</title><title>Security and privacy</title><description>Real‐time detection of domain names that are generated using the domain generating algorithms (DGA) is a challenging cyber security challenge. Traditional malware control methods, such as blacklisting, are insufficient to handle DGA threats. In this paper, a machine learning framework for identifying and detecting DGA domains is proposed to alleviate the threat. The proposed machine learning framework consists of a two‐level model. In the two‐level model, the DGA domains are classified apart from normal domains and then the clustering method is used to identify the algorithms that generate those DGA domains.</description><subject>density‐based spatial clustering of applications with noise</subject><subject>DGA</subject><subject>gradient boosting tree</subject><subject>J48</subject><subject>Jaccard‐index</subject><subject>logistic regression</subject><subject>machine learning</subject><subject>malware</subject><subject>n‐grams entropy ordering points to identify the clustering</subject><issn>2475-6725</issn><issn>2475-6725</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kL1qwzAYRUVpoSEN9BE0dnEqfbYkewyhfxBooenQycjSp0Stf4JkMH772qRDl073wj3c4RByy9maMwb38TTCmoO6IAvIlEikAnH5p1-TVYxfjDGeyxSKfEH2G9poc_Qt0hp1aH17oC7oBocufFPXBWq7RvuWHrDFoPt51_WhC74_NrTSEe10UA86ILXYo-l9196QK6friKvfXJKPx4f99jnZvT69bDe7xAAUKhHaFCgyx52pcmnB5AjWCKeUYJihUshYjha4RimqzEjJClvIvDKZSTlguiR3518TuhgDuvIUfKPDWHJWzkLKWUg5CZnQ5IwOvsbxX658f_uEmf8B9rljUQ</recordid><startdate>202011</startdate><enddate>202011</enddate><creator>G. P., Akhila</creator><creator>R., Gayathri</creator><creator>S., Keerthana</creator><creator>Gladston, Angelin</creator><general>Wiley Periodicals, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-3899-2474</orcidid></search><sort><creationdate>202011</creationdate><title>A machine learning framework for domain generating algorithm based malware detection</title><author>G. P., Akhila ; R., Gayathri ; S., Keerthana ; Gladston, Angelin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2297-5ac9e54f1fcb86d2c8e2dc5f7750e4e77e008ed21ae65b4c6609d968bc4c312e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>density‐based spatial clustering of applications with noise</topic><topic>DGA</topic><topic>gradient boosting tree</topic><topic>J48</topic><topic>Jaccard‐index</topic><topic>logistic regression</topic><topic>machine learning</topic><topic>malware</topic><topic>n‐grams entropy ordering points to identify the clustering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>G. P., Akhila</creatorcontrib><creatorcontrib>R., Gayathri</creatorcontrib><creatorcontrib>S., Keerthana</creatorcontrib><creatorcontrib>Gladston, Angelin</creatorcontrib><collection>CrossRef</collection><jtitle>Security and privacy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>G. P., Akhila</au><au>R., Gayathri</au><au>S., Keerthana</au><au>Gladston, Angelin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A machine learning framework for domain generating algorithm based malware detection</atitle><jtitle>Security and privacy</jtitle><date>2020-11</date><risdate>2020</risdate><volume>3</volume><issue>6</issue><epage>n/a</epage><issn>2475-6725</issn><eissn>2475-6725</eissn><abstract>Real‐time detection of domain names that are generated using the domain generating algorithms (DGA) is a challenging cyber security challenge. Traditional malware control methods, such as blacklisting, are insufficient to handle DGA threats. In this paper, a machine learning framework for identifying and detecting DGA domains is proposed to alleviate the threat. The proposed machine learning framework consists of a two‐level model. In the two‐level model, the DGA domains are classified apart from normal domains and then the clustering method is used to identify the algorithms that generate those DGA domains.</abstract><cop>Boston, USA</cop><pub>Wiley Periodicals, Inc</pub><doi>10.1002/spy2.127</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0003-3899-2474</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2475-6725 |
ispartof | Security and privacy, 2020-11, Vol.3 (6), p.n/a |
issn | 2475-6725 2475-6725 |
language | eng |
recordid | cdi_crossref_primary_10_1002_spy2_127 |
source | Access via Wiley Online Library |
subjects | density‐based spatial clustering of applications with noise DGA gradient boosting tree J48 Jaccard‐index logistic regression machine learning malware n‐grams entropy ordering points to identify the clustering |
title | A machine learning framework for domain generating algorithm based malware detection |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T00%3A14%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20machine%20learning%20framework%20for%20domain%20generating%20algorithm%20based%20malware%20detection&rft.jtitle=Security%20and%20privacy&rft.au=G.%20P.,%20Akhila&rft.date=2020-11&rft.volume=3&rft.issue=6&rft.epage=n/a&rft.issn=2475-6725&rft.eissn=2475-6725&rft_id=info:doi/10.1002/spy2.127&rft_dat=%3Cwiley_cross%3ESPY2127%3C/wiley_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |