Exploiting tag similarities to discover synonyms and homonyms in folksonomies

SUMMARYTag‐based systems are widely available, thanks to their intrinsic advantages, such as self‐organization, currency, and ease of use. Although they represent a precious source of semantic metadata, their utility is still limited. The inherent lexical ambiguities of tags strongly affect the extr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Software, practice & experience practice & experience, 2013-12, Vol.43 (12), p.1437-1457
Hauptverfasser: Eynard, Davide, Mazzola, Luca, Dattolo, Antonina
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1457
container_issue 12
container_start_page 1437
container_title Software, practice & experience
container_volume 43
creator Eynard, Davide
Mazzola, Luca
Dattolo, Antonina
description SUMMARYTag‐based systems are widely available, thanks to their intrinsic advantages, such as self‐organization, currency, and ease of use. Although they represent a precious source of semantic metadata, their utility is still limited. The inherent lexical ambiguities of tags strongly affect the extraction of structured knowledge and the quality of tag‐based recommendation systems. In this paper, we propose a methodology for the analysis of tag‐based systems, addressing tag synonymy and homonymy at the same time in a holistic approach: in more detail, we exploit a tripartite graph to reduce the problem of synonyms and homonyms; we apply a customized version of Tag Context Similarity to detect them, overcoming the limitations of current similarity metrics; finally, we propose the application of an overlapping clustering algorithm to detect contexts and homonymies, then evaluate its performances, and introduce a methodology for the interpretation of its results. Copyright © 2012 John Wiley & Sons, Ltd.
doi_str_mv 10.1002/spe.2150
format Article
fullrecord <record><control><sourceid>wiley_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_spe_2150</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>SPE2150</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3030-ef262d8fa9e6adf2d28051b2bf2e2121dde4f05cb05274239659867796fe9eb23</originalsourceid><addsrcrecordid>eNp1kLFOwzAQhi0EEqUg8QgZWVLOl9hJRlSVglSVQkF0s5zELqZJXMVRaTZWXpMnIaUIiYHlTnf6_n_4CDmnMKAAeOnWaoCUwQHpUUgiHzBcHJIeQBD7wMPwmJw49wpAKUPeI_ej7bqwpjHV0mvk0nOmNIWsu4dyXmO93LjMblTtubayVVs6T1a592LL7-Pz_cNU3dC2WDlb2bJLnZIjLQunzn52nzxdjx6HN_7kbnw7vJr4WQAB-EojxzzWMlFc5hpzjIHRFFONCinSPFehBpalwDAKMUg4S2IeRQnXKlEpBn1yse_NautcrbRY16aUdSsoiJ0K0akQOxUd6u_RN1Oo9l9OzGejv7xxjdr-8rJeCR4FERPP07HAyXTG5g9cLIIvC5tyqA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Exploiting tag similarities to discover synonyms and homonyms in folksonomies</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Eynard, Davide ; Mazzola, Luca ; Dattolo, Antonina</creator><creatorcontrib>Eynard, Davide ; Mazzola, Luca ; Dattolo, Antonina</creatorcontrib><description>SUMMARYTag‐based systems are widely available, thanks to their intrinsic advantages, such as self‐organization, currency, and ease of use. Although they represent a precious source of semantic metadata, their utility is still limited. The inherent lexical ambiguities of tags strongly affect the extraction of structured knowledge and the quality of tag‐based recommendation systems. In this paper, we propose a methodology for the analysis of tag‐based systems, addressing tag synonymy and homonymy at the same time in a holistic approach: in more detail, we exploit a tripartite graph to reduce the problem of synonyms and homonyms; we apply a customized version of Tag Context Similarity to detect them, overcoming the limitations of current similarity metrics; finally, we propose the application of an overlapping clustering algorithm to detect contexts and homonymies, then evaluate its performances, and introduce a methodology for the interpretation of its results. Copyright © 2012 John Wiley &amp; Sons, Ltd.</description><identifier>ISSN: 0038-0644</identifier><identifier>EISSN: 1097-024X</identifier><identifier>DOI: 10.1002/spe.2150</identifier><language>eng</language><publisher>Blackwell Publishing Ltd</publisher><subject>folksonomies ; tag clustering ; tag disambiguation ; tag similarity</subject><ispartof>Software, practice &amp; experience, 2013-12, Vol.43 (12), p.1437-1457</ispartof><rights>Copyright © 2012 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3030-ef262d8fa9e6adf2d28051b2bf2e2121dde4f05cb05274239659867796fe9eb23</citedby><cites>FETCH-LOGICAL-c3030-ef262d8fa9e6adf2d28051b2bf2e2121dde4f05cb05274239659867796fe9eb23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fspe.2150$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fspe.2150$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids></links><search><creatorcontrib>Eynard, Davide</creatorcontrib><creatorcontrib>Mazzola, Luca</creatorcontrib><creatorcontrib>Dattolo, Antonina</creatorcontrib><title>Exploiting tag similarities to discover synonyms and homonyms in folksonomies</title><title>Software, practice &amp; experience</title><addtitle>Softw. Pract. Exper</addtitle><description>SUMMARYTag‐based systems are widely available, thanks to their intrinsic advantages, such as self‐organization, currency, and ease of use. Although they represent a precious source of semantic metadata, their utility is still limited. The inherent lexical ambiguities of tags strongly affect the extraction of structured knowledge and the quality of tag‐based recommendation systems. In this paper, we propose a methodology for the analysis of tag‐based systems, addressing tag synonymy and homonymy at the same time in a holistic approach: in more detail, we exploit a tripartite graph to reduce the problem of synonyms and homonyms; we apply a customized version of Tag Context Similarity to detect them, overcoming the limitations of current similarity metrics; finally, we propose the application of an overlapping clustering algorithm to detect contexts and homonymies, then evaluate its performances, and introduce a methodology for the interpretation of its results. Copyright © 2012 John Wiley &amp; Sons, Ltd.</description><subject>folksonomies</subject><subject>tag clustering</subject><subject>tag disambiguation</subject><subject>tag similarity</subject><issn>0038-0644</issn><issn>1097-024X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp1kLFOwzAQhi0EEqUg8QgZWVLOl9hJRlSVglSVQkF0s5zELqZJXMVRaTZWXpMnIaUIiYHlTnf6_n_4CDmnMKAAeOnWaoCUwQHpUUgiHzBcHJIeQBD7wMPwmJw49wpAKUPeI_ej7bqwpjHV0mvk0nOmNIWsu4dyXmO93LjMblTtubayVVs6T1a592LL7-Pz_cNU3dC2WDlb2bJLnZIjLQunzn52nzxdjx6HN_7kbnw7vJr4WQAB-EojxzzWMlFc5hpzjIHRFFONCinSPFehBpalwDAKMUg4S2IeRQnXKlEpBn1yse_NautcrbRY16aUdSsoiJ0K0akQOxUd6u_RN1Oo9l9OzGejv7xxjdr-8rJeCR4FERPP07HAyXTG5g9cLIIvC5tyqA</recordid><startdate>201312</startdate><enddate>201312</enddate><creator>Eynard, Davide</creator><creator>Mazzola, Luca</creator><creator>Dattolo, Antonina</creator><general>Blackwell Publishing Ltd</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>201312</creationdate><title>Exploiting tag similarities to discover synonyms and homonyms in folksonomies</title><author>Eynard, Davide ; Mazzola, Luca ; Dattolo, Antonina</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3030-ef262d8fa9e6adf2d28051b2bf2e2121dde4f05cb05274239659867796fe9eb23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>folksonomies</topic><topic>tag clustering</topic><topic>tag disambiguation</topic><topic>tag similarity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Eynard, Davide</creatorcontrib><creatorcontrib>Mazzola, Luca</creatorcontrib><creatorcontrib>Dattolo, Antonina</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><jtitle>Software, practice &amp; experience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Eynard, Davide</au><au>Mazzola, Luca</au><au>Dattolo, Antonina</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exploiting tag similarities to discover synonyms and homonyms in folksonomies</atitle><jtitle>Software, practice &amp; experience</jtitle><addtitle>Softw. Pract. Exper</addtitle><date>2013-12</date><risdate>2013</risdate><volume>43</volume><issue>12</issue><spage>1437</spage><epage>1457</epage><pages>1437-1457</pages><issn>0038-0644</issn><eissn>1097-024X</eissn><abstract>SUMMARYTag‐based systems are widely available, thanks to their intrinsic advantages, such as self‐organization, currency, and ease of use. Although they represent a precious source of semantic metadata, their utility is still limited. The inherent lexical ambiguities of tags strongly affect the extraction of structured knowledge and the quality of tag‐based recommendation systems. In this paper, we propose a methodology for the analysis of tag‐based systems, addressing tag synonymy and homonymy at the same time in a holistic approach: in more detail, we exploit a tripartite graph to reduce the problem of synonyms and homonyms; we apply a customized version of Tag Context Similarity to detect them, overcoming the limitations of current similarity metrics; finally, we propose the application of an overlapping clustering algorithm to detect contexts and homonymies, then evaluate its performances, and introduce a methodology for the interpretation of its results. Copyright © 2012 John Wiley &amp; Sons, Ltd.</abstract><pub>Blackwell Publishing Ltd</pub><doi>10.1002/spe.2150</doi><tpages>21</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0038-0644
ispartof Software, practice & experience, 2013-12, Vol.43 (12), p.1437-1457
issn 0038-0644
1097-024X
language eng
recordid cdi_crossref_primary_10_1002_spe_2150
source Wiley Online Library Journals Frontfile Complete
subjects folksonomies
tag clustering
tag disambiguation
tag similarity
title Exploiting tag similarities to discover synonyms and homonyms in folksonomies
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T11%3A37%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exploiting%20tag%20similarities%20to%20discover%20synonyms%20and%20homonyms%E2%80%89in%E2%80%89folksonomies&rft.jtitle=Software,%20practice%20&%20experience&rft.au=Eynard,%20Davide&rft.date=2013-12&rft.volume=43&rft.issue=12&rft.spage=1437&rft.epage=1457&rft.pages=1437-1457&rft.issn=0038-0644&rft.eissn=1097-024X&rft_id=info:doi/10.1002/spe.2150&rft_dat=%3Cwiley_cross%3ESPE2150%3C/wiley_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true