Exploiting tag similarities to discover synonyms and homonyms in folksonomies
SUMMARYTag‐based systems are widely available, thanks to their intrinsic advantages, such as self‐organization, currency, and ease of use. Although they represent a precious source of semantic metadata, their utility is still limited. The inherent lexical ambiguities of tags strongly affect the extr...
Gespeichert in:
Veröffentlicht in: | Software, practice & experience practice & experience, 2013-12, Vol.43 (12), p.1437-1457 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1457 |
---|---|
container_issue | 12 |
container_start_page | 1437 |
container_title | Software, practice & experience |
container_volume | 43 |
creator | Eynard, Davide Mazzola, Luca Dattolo, Antonina |
description | SUMMARYTag‐based systems are widely available, thanks to their intrinsic advantages, such as self‐organization, currency, and ease of use. Although they represent a precious source of semantic metadata, their utility is still limited. The inherent lexical ambiguities of tags strongly affect the extraction of structured knowledge and the quality of tag‐based recommendation systems. In this paper, we propose a methodology for the analysis of tag‐based systems, addressing tag synonymy and homonymy at the same time in a holistic approach: in more detail, we exploit a tripartite graph to reduce the problem of synonyms and homonyms; we apply a customized version of Tag Context Similarity to detect them, overcoming the limitations of current similarity metrics; finally, we propose the application of an overlapping clustering algorithm to detect contexts and homonymies, then evaluate its performances, and introduce a methodology for the interpretation of its results. Copyright © 2012 John Wiley & Sons, Ltd. |
doi_str_mv | 10.1002/spe.2150 |
format | Article |
fullrecord | <record><control><sourceid>wiley_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_spe_2150</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>SPE2150</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3030-ef262d8fa9e6adf2d28051b2bf2e2121dde4f05cb05274239659867796fe9eb23</originalsourceid><addsrcrecordid>eNp1kLFOwzAQhi0EEqUg8QgZWVLOl9hJRlSVglSVQkF0s5zELqZJXMVRaTZWXpMnIaUIiYHlTnf6_n_4CDmnMKAAeOnWaoCUwQHpUUgiHzBcHJIeQBD7wMPwmJw49wpAKUPeI_ej7bqwpjHV0mvk0nOmNIWsu4dyXmO93LjMblTtubayVVs6T1a592LL7-Pz_cNU3dC2WDlb2bJLnZIjLQunzn52nzxdjx6HN_7kbnw7vJr4WQAB-EojxzzWMlFc5hpzjIHRFFONCinSPFehBpalwDAKMUg4S2IeRQnXKlEpBn1yse_NautcrbRY16aUdSsoiJ0K0akQOxUd6u_RN1Oo9l9OzGejv7xxjdr-8rJeCR4FERPP07HAyXTG5g9cLIIvC5tyqA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Exploiting tag similarities to discover synonyms and homonyms in folksonomies</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Eynard, Davide ; Mazzola, Luca ; Dattolo, Antonina</creator><creatorcontrib>Eynard, Davide ; Mazzola, Luca ; Dattolo, Antonina</creatorcontrib><description>SUMMARYTag‐based systems are widely available, thanks to their intrinsic advantages, such as self‐organization, currency, and ease of use. Although they represent a precious source of semantic metadata, their utility is still limited. The inherent lexical ambiguities of tags strongly affect the extraction of structured knowledge and the quality of tag‐based recommendation systems. In this paper, we propose a methodology for the analysis of tag‐based systems, addressing tag synonymy and homonymy at the same time in a holistic approach: in more detail, we exploit a tripartite graph to reduce the problem of synonyms and homonyms; we apply a customized version of Tag Context Similarity to detect them, overcoming the limitations of current similarity metrics; finally, we propose the application of an overlapping clustering algorithm to detect contexts and homonymies, then evaluate its performances, and introduce a methodology for the interpretation of its results. Copyright © 2012 John Wiley & Sons, Ltd.</description><identifier>ISSN: 0038-0644</identifier><identifier>EISSN: 1097-024X</identifier><identifier>DOI: 10.1002/spe.2150</identifier><language>eng</language><publisher>Blackwell Publishing Ltd</publisher><subject>folksonomies ; tag clustering ; tag disambiguation ; tag similarity</subject><ispartof>Software, practice & experience, 2013-12, Vol.43 (12), p.1437-1457</ispartof><rights>Copyright © 2012 John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3030-ef262d8fa9e6adf2d28051b2bf2e2121dde4f05cb05274239659867796fe9eb23</citedby><cites>FETCH-LOGICAL-c3030-ef262d8fa9e6adf2d28051b2bf2e2121dde4f05cb05274239659867796fe9eb23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fspe.2150$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fspe.2150$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids></links><search><creatorcontrib>Eynard, Davide</creatorcontrib><creatorcontrib>Mazzola, Luca</creatorcontrib><creatorcontrib>Dattolo, Antonina</creatorcontrib><title>Exploiting tag similarities to discover synonyms and homonyms in folksonomies</title><title>Software, practice & experience</title><addtitle>Softw. Pract. Exper</addtitle><description>SUMMARYTag‐based systems are widely available, thanks to their intrinsic advantages, such as self‐organization, currency, and ease of use. Although they represent a precious source of semantic metadata, their utility is still limited. The inherent lexical ambiguities of tags strongly affect the extraction of structured knowledge and the quality of tag‐based recommendation systems. In this paper, we propose a methodology for the analysis of tag‐based systems, addressing tag synonymy and homonymy at the same time in a holistic approach: in more detail, we exploit a tripartite graph to reduce the problem of synonyms and homonyms; we apply a customized version of Tag Context Similarity to detect them, overcoming the limitations of current similarity metrics; finally, we propose the application of an overlapping clustering algorithm to detect contexts and homonymies, then evaluate its performances, and introduce a methodology for the interpretation of its results. Copyright © 2012 John Wiley & Sons, Ltd.</description><subject>folksonomies</subject><subject>tag clustering</subject><subject>tag disambiguation</subject><subject>tag similarity</subject><issn>0038-0644</issn><issn>1097-024X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp1kLFOwzAQhi0EEqUg8QgZWVLOl9hJRlSVglSVQkF0s5zELqZJXMVRaTZWXpMnIaUIiYHlTnf6_n_4CDmnMKAAeOnWaoCUwQHpUUgiHzBcHJIeQBD7wMPwmJw49wpAKUPeI_ej7bqwpjHV0mvk0nOmNIWsu4dyXmO93LjMblTtubayVVs6T1a592LL7-Pz_cNU3dC2WDlb2bJLnZIjLQunzn52nzxdjx6HN_7kbnw7vJr4WQAB-EojxzzWMlFc5hpzjIHRFFONCinSPFehBpalwDAKMUg4S2IeRQnXKlEpBn1yse_NautcrbRY16aUdSsoiJ0K0akQOxUd6u_RN1Oo9l9OzGejv7xxjdr-8rJeCR4FERPP07HAyXTG5g9cLIIvC5tyqA</recordid><startdate>201312</startdate><enddate>201312</enddate><creator>Eynard, Davide</creator><creator>Mazzola, Luca</creator><creator>Dattolo, Antonina</creator><general>Blackwell Publishing Ltd</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>201312</creationdate><title>Exploiting tag similarities to discover synonyms and homonyms in folksonomies</title><author>Eynard, Davide ; Mazzola, Luca ; Dattolo, Antonina</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3030-ef262d8fa9e6adf2d28051b2bf2e2121dde4f05cb05274239659867796fe9eb23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>folksonomies</topic><topic>tag clustering</topic><topic>tag disambiguation</topic><topic>tag similarity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Eynard, Davide</creatorcontrib><creatorcontrib>Mazzola, Luca</creatorcontrib><creatorcontrib>Dattolo, Antonina</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><jtitle>Software, practice & experience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Eynard, Davide</au><au>Mazzola, Luca</au><au>Dattolo, Antonina</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exploiting tag similarities to discover synonyms and homonyms in folksonomies</atitle><jtitle>Software, practice & experience</jtitle><addtitle>Softw. Pract. Exper</addtitle><date>2013-12</date><risdate>2013</risdate><volume>43</volume><issue>12</issue><spage>1437</spage><epage>1457</epage><pages>1437-1457</pages><issn>0038-0644</issn><eissn>1097-024X</eissn><abstract>SUMMARYTag‐based systems are widely available, thanks to their intrinsic advantages, such as self‐organization, currency, and ease of use. Although they represent a precious source of semantic metadata, their utility is still limited. The inherent lexical ambiguities of tags strongly affect the extraction of structured knowledge and the quality of tag‐based recommendation systems. In this paper, we propose a methodology for the analysis of tag‐based systems, addressing tag synonymy and homonymy at the same time in a holistic approach: in more detail, we exploit a tripartite graph to reduce the problem of synonyms and homonyms; we apply a customized version of Tag Context Similarity to detect them, overcoming the limitations of current similarity metrics; finally, we propose the application of an overlapping clustering algorithm to detect contexts and homonymies, then evaluate its performances, and introduce a methodology for the interpretation of its results. Copyright © 2012 John Wiley & Sons, Ltd.</abstract><pub>Blackwell Publishing Ltd</pub><doi>10.1002/spe.2150</doi><tpages>21</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0038-0644 |
ispartof | Software, practice & experience, 2013-12, Vol.43 (12), p.1437-1457 |
issn | 0038-0644 1097-024X |
language | eng |
recordid | cdi_crossref_primary_10_1002_spe_2150 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | folksonomies tag clustering tag disambiguation tag similarity |
title | Exploiting tag similarities to discover synonyms and homonyms in folksonomies |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T11%3A37%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exploiting%20tag%20similarities%20to%20discover%20synonyms%20and%20homonyms%E2%80%89in%E2%80%89folksonomies&rft.jtitle=Software,%20practice%20&%20experience&rft.au=Eynard,%20Davide&rft.date=2013-12&rft.volume=43&rft.issue=12&rft.spage=1437&rft.epage=1457&rft.pages=1437-1457&rft.issn=0038-0644&rft.eissn=1097-024X&rft_id=info:doi/10.1002/spe.2150&rft_dat=%3Cwiley_cross%3ESPE2150%3C/wiley_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |