Organic Molecule and Inorganic Salt Synergistic‐Modified SnO 2 for Efficient Perovskite Solar Cells

Element doping and interface modification strategy are effective methods to regulate the electrical properties of SnO 2 electron transport material, SnO 2 /perovskite (PVK) interface, and PVK crystal growth. Herein, rubidium fluoride (RbF) is introduced into SnO 2 colloidal dispersion, and then an u...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Solar RRL 2024-10, Vol.8 (20)
Hauptverfasser: Li, Guoming, Ma, Zhu, Yu, Tangjie, Xuan, Ningqiang, Huang, Zhangfeng, Li, Yanlin, Hou, Shanyue, Liu, Qianyu, You, Wei, Chen, Yi, Du, Zhuowei, Yang, Junbo, Yang, Qiang, Tan, Li, Huang, Cheng, Xiang, Yan, Mai, Yaohua, Yu, Jian, Long, Wei
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 20
container_start_page
container_title Solar RRL
container_volume 8
creator Li, Guoming
Ma, Zhu
Yu, Tangjie
Xuan, Ningqiang
Huang, Zhangfeng
Li, Yanlin
Hou, Shanyue
Liu, Qianyu
You, Wei
Chen, Yi
Du, Zhuowei
Yang, Junbo
Yang, Qiang
Tan, Li
Huang, Cheng
Xiang, Yan
Mai, Yaohua
Yu, Jian
Long, Wei
description Element doping and interface modification strategy are effective methods to regulate the electrical properties of SnO 2 electron transport material, SnO 2 /perovskite (PVK) interface, and PVK crystal growth. Herein, rubidium fluoride (RbF) is introduced into SnO 2 colloidal dispersion, and then an ultra‐thin layer of 4‐carboxy‐3‐fluorobenzoboric acid (FBCA) is applied to the SnO 2 layer surface. This synergistic modification strategy can improve the electrical conductivity of the electron transport layer, increase the chemical connection of the buried interface, improve the crystallization and grain growth of PVK, and thus promote the performance and stability of devices. The results show that the PVK solar cells (PSCs) with the synergistic‐modified SnO 2 electron transport material (M‐SnO 2 ) obtain an optimum power conversion efficiency of 21.92% and the unencapsulated PSCs sustain 91% and 87% of the original value, which stored in a nitrogen atmosphere and ambient atmosphere (25 ± 5 °C, 30–50% relative humidity) more than 1000 h, respectively.
doi_str_mv 10.1002/solr.202400122
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1002_solr_202400122</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1002_solr_202400122</sourcerecordid><originalsourceid>FETCH-crossref_primary_10_1002_solr_2024001223</originalsourceid><addsrcrecordid>eNqVj8FKAzEURYMoWLTbrt8PdEzSYVrXpWIXpcK4cBdC5mV4NSby3ih05yf4jf0SLRRx29U9XDiLo9TE6Mpobe-kJK6strXWxtoLNbKzZj4194uXy398rcYiO_0r1PV80ZiRwi33PlOATUkYPhKCzx2sczndrU8DtPuM3JMMFA5f35vSUSTsoM1bsBALwypGCoR5gCfk8imvNCC0JXmGJaYkt-oq-iQ4Pu2Nqh5Wz8vHaeAiwhjdO9Ob570z2h173LHH_fXMzhZ-ALKDVOQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Organic Molecule and Inorganic Salt Synergistic‐Modified SnO 2 for Efficient Perovskite Solar Cells</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Li, Guoming ; Ma, Zhu ; Yu, Tangjie ; Xuan, Ningqiang ; Huang, Zhangfeng ; Li, Yanlin ; Hou, Shanyue ; Liu, Qianyu ; You, Wei ; Chen, Yi ; Du, Zhuowei ; Yang, Junbo ; Yang, Qiang ; Tan, Li ; Huang, Cheng ; Xiang, Yan ; Mai, Yaohua ; Yu, Jian ; Long, Wei</creator><creatorcontrib>Li, Guoming ; Ma, Zhu ; Yu, Tangjie ; Xuan, Ningqiang ; Huang, Zhangfeng ; Li, Yanlin ; Hou, Shanyue ; Liu, Qianyu ; You, Wei ; Chen, Yi ; Du, Zhuowei ; Yang, Junbo ; Yang, Qiang ; Tan, Li ; Huang, Cheng ; Xiang, Yan ; Mai, Yaohua ; Yu, Jian ; Long, Wei</creatorcontrib><description>Element doping and interface modification strategy are effective methods to regulate the electrical properties of SnO 2 electron transport material, SnO 2 /perovskite (PVK) interface, and PVK crystal growth. Herein, rubidium fluoride (RbF) is introduced into SnO 2 colloidal dispersion, and then an ultra‐thin layer of 4‐carboxy‐3‐fluorobenzoboric acid (FBCA) is applied to the SnO 2 layer surface. This synergistic modification strategy can improve the electrical conductivity of the electron transport layer, increase the chemical connection of the buried interface, improve the crystallization and grain growth of PVK, and thus promote the performance and stability of devices. The results show that the PVK solar cells (PSCs) with the synergistic‐modified SnO 2 electron transport material (M‐SnO 2 ) obtain an optimum power conversion efficiency of 21.92% and the unencapsulated PSCs sustain 91% and 87% of the original value, which stored in a nitrogen atmosphere and ambient atmosphere (25 ± 5 °C, 30–50% relative humidity) more than 1000 h, respectively.</description><identifier>ISSN: 2367-198X</identifier><identifier>EISSN: 2367-198X</identifier><identifier>DOI: 10.1002/solr.202400122</identifier><language>eng</language><ispartof>Solar RRL, 2024-10, Vol.8 (20)</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-crossref_primary_10_1002_solr_2024001223</cites><orcidid>0000-0002-3795-361X ; 0000-0002-7418-6069 ; 0000-0002-0710-262X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Li, Guoming</creatorcontrib><creatorcontrib>Ma, Zhu</creatorcontrib><creatorcontrib>Yu, Tangjie</creatorcontrib><creatorcontrib>Xuan, Ningqiang</creatorcontrib><creatorcontrib>Huang, Zhangfeng</creatorcontrib><creatorcontrib>Li, Yanlin</creatorcontrib><creatorcontrib>Hou, Shanyue</creatorcontrib><creatorcontrib>Liu, Qianyu</creatorcontrib><creatorcontrib>You, Wei</creatorcontrib><creatorcontrib>Chen, Yi</creatorcontrib><creatorcontrib>Du, Zhuowei</creatorcontrib><creatorcontrib>Yang, Junbo</creatorcontrib><creatorcontrib>Yang, Qiang</creatorcontrib><creatorcontrib>Tan, Li</creatorcontrib><creatorcontrib>Huang, Cheng</creatorcontrib><creatorcontrib>Xiang, Yan</creatorcontrib><creatorcontrib>Mai, Yaohua</creatorcontrib><creatorcontrib>Yu, Jian</creatorcontrib><creatorcontrib>Long, Wei</creatorcontrib><title>Organic Molecule and Inorganic Salt Synergistic‐Modified SnO 2 for Efficient Perovskite Solar Cells</title><title>Solar RRL</title><description>Element doping and interface modification strategy are effective methods to regulate the electrical properties of SnO 2 electron transport material, SnO 2 /perovskite (PVK) interface, and PVK crystal growth. Herein, rubidium fluoride (RbF) is introduced into SnO 2 colloidal dispersion, and then an ultra‐thin layer of 4‐carboxy‐3‐fluorobenzoboric acid (FBCA) is applied to the SnO 2 layer surface. This synergistic modification strategy can improve the electrical conductivity of the electron transport layer, increase the chemical connection of the buried interface, improve the crystallization and grain growth of PVK, and thus promote the performance and stability of devices. The results show that the PVK solar cells (PSCs) with the synergistic‐modified SnO 2 electron transport material (M‐SnO 2 ) obtain an optimum power conversion efficiency of 21.92% and the unencapsulated PSCs sustain 91% and 87% of the original value, which stored in a nitrogen atmosphere and ambient atmosphere (25 ± 5 °C, 30–50% relative humidity) more than 1000 h, respectively.</description><issn>2367-198X</issn><issn>2367-198X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqVj8FKAzEURYMoWLTbrt8PdEzSYVrXpWIXpcK4cBdC5mV4NSby3ih05yf4jf0SLRRx29U9XDiLo9TE6Mpobe-kJK6strXWxtoLNbKzZj4194uXy398rcYiO_0r1PV80ZiRwi33PlOATUkYPhKCzx2sczndrU8DtPuM3JMMFA5f35vSUSTsoM1bsBALwypGCoR5gCfk8imvNCC0JXmGJaYkt-oq-iQ4Pu2Nqh5Wz8vHaeAiwhjdO9Ob570z2h173LHH_fXMzhZ-ALKDVOQ</recordid><startdate>202410</startdate><enddate>202410</enddate><creator>Li, Guoming</creator><creator>Ma, Zhu</creator><creator>Yu, Tangjie</creator><creator>Xuan, Ningqiang</creator><creator>Huang, Zhangfeng</creator><creator>Li, Yanlin</creator><creator>Hou, Shanyue</creator><creator>Liu, Qianyu</creator><creator>You, Wei</creator><creator>Chen, Yi</creator><creator>Du, Zhuowei</creator><creator>Yang, Junbo</creator><creator>Yang, Qiang</creator><creator>Tan, Li</creator><creator>Huang, Cheng</creator><creator>Xiang, Yan</creator><creator>Mai, Yaohua</creator><creator>Yu, Jian</creator><creator>Long, Wei</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-3795-361X</orcidid><orcidid>https://orcid.org/0000-0002-7418-6069</orcidid><orcidid>https://orcid.org/0000-0002-0710-262X</orcidid></search><sort><creationdate>202410</creationdate><title>Organic Molecule and Inorganic Salt Synergistic‐Modified SnO 2 for Efficient Perovskite Solar Cells</title><author>Li, Guoming ; Ma, Zhu ; Yu, Tangjie ; Xuan, Ningqiang ; Huang, Zhangfeng ; Li, Yanlin ; Hou, Shanyue ; Liu, Qianyu ; You, Wei ; Chen, Yi ; Du, Zhuowei ; Yang, Junbo ; Yang, Qiang ; Tan, Li ; Huang, Cheng ; Xiang, Yan ; Mai, Yaohua ; Yu, Jian ; Long, Wei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-crossref_primary_10_1002_solr_2024001223</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Guoming</creatorcontrib><creatorcontrib>Ma, Zhu</creatorcontrib><creatorcontrib>Yu, Tangjie</creatorcontrib><creatorcontrib>Xuan, Ningqiang</creatorcontrib><creatorcontrib>Huang, Zhangfeng</creatorcontrib><creatorcontrib>Li, Yanlin</creatorcontrib><creatorcontrib>Hou, Shanyue</creatorcontrib><creatorcontrib>Liu, Qianyu</creatorcontrib><creatorcontrib>You, Wei</creatorcontrib><creatorcontrib>Chen, Yi</creatorcontrib><creatorcontrib>Du, Zhuowei</creatorcontrib><creatorcontrib>Yang, Junbo</creatorcontrib><creatorcontrib>Yang, Qiang</creatorcontrib><creatorcontrib>Tan, Li</creatorcontrib><creatorcontrib>Huang, Cheng</creatorcontrib><creatorcontrib>Xiang, Yan</creatorcontrib><creatorcontrib>Mai, Yaohua</creatorcontrib><creatorcontrib>Yu, Jian</creatorcontrib><creatorcontrib>Long, Wei</creatorcontrib><collection>CrossRef</collection><jtitle>Solar RRL</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Guoming</au><au>Ma, Zhu</au><au>Yu, Tangjie</au><au>Xuan, Ningqiang</au><au>Huang, Zhangfeng</au><au>Li, Yanlin</au><au>Hou, Shanyue</au><au>Liu, Qianyu</au><au>You, Wei</au><au>Chen, Yi</au><au>Du, Zhuowei</au><au>Yang, Junbo</au><au>Yang, Qiang</au><au>Tan, Li</au><au>Huang, Cheng</au><au>Xiang, Yan</au><au>Mai, Yaohua</au><au>Yu, Jian</au><au>Long, Wei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Organic Molecule and Inorganic Salt Synergistic‐Modified SnO 2 for Efficient Perovskite Solar Cells</atitle><jtitle>Solar RRL</jtitle><date>2024-10</date><risdate>2024</risdate><volume>8</volume><issue>20</issue><issn>2367-198X</issn><eissn>2367-198X</eissn><abstract>Element doping and interface modification strategy are effective methods to regulate the electrical properties of SnO 2 electron transport material, SnO 2 /perovskite (PVK) interface, and PVK crystal growth. Herein, rubidium fluoride (RbF) is introduced into SnO 2 colloidal dispersion, and then an ultra‐thin layer of 4‐carboxy‐3‐fluorobenzoboric acid (FBCA) is applied to the SnO 2 layer surface. This synergistic modification strategy can improve the electrical conductivity of the electron transport layer, increase the chemical connection of the buried interface, improve the crystallization and grain growth of PVK, and thus promote the performance and stability of devices. The results show that the PVK solar cells (PSCs) with the synergistic‐modified SnO 2 electron transport material (M‐SnO 2 ) obtain an optimum power conversion efficiency of 21.92% and the unencapsulated PSCs sustain 91% and 87% of the original value, which stored in a nitrogen atmosphere and ambient atmosphere (25 ± 5 °C, 30–50% relative humidity) more than 1000 h, respectively.</abstract><doi>10.1002/solr.202400122</doi><orcidid>https://orcid.org/0000-0002-3795-361X</orcidid><orcidid>https://orcid.org/0000-0002-7418-6069</orcidid><orcidid>https://orcid.org/0000-0002-0710-262X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2367-198X
ispartof Solar RRL, 2024-10, Vol.8 (20)
issn 2367-198X
2367-198X
language eng
recordid cdi_crossref_primary_10_1002_solr_202400122
source Wiley Online Library Journals Frontfile Complete
title Organic Molecule and Inorganic Salt Synergistic‐Modified SnO 2 for Efficient Perovskite Solar Cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-16T02%3A03%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Organic%20Molecule%20and%20Inorganic%20Salt%20Synergistic%E2%80%90Modified%20SnO%202%20for%20Efficient%20Perovskite%20Solar%20Cells&rft.jtitle=Solar%20RRL&rft.au=Li,%20Guoming&rft.date=2024-10&rft.volume=8&rft.issue=20&rft.issn=2367-198X&rft.eissn=2367-198X&rft_id=info:doi/10.1002/solr.202400122&rft_dat=%3Ccrossref%3E10_1002_solr_202400122%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true