Organic Molecule and Inorganic Salt Synergistic‐Modified SnO 2 for Efficient Perovskite Solar Cells
Element doping and interface modification strategy are effective methods to regulate the electrical properties of SnO 2 electron transport material, SnO 2 /perovskite (PVK) interface, and PVK crystal growth. Herein, rubidium fluoride (RbF) is introduced into SnO 2 colloidal dispersion, and then an u...
Gespeichert in:
Veröffentlicht in: | Solar RRL 2024-10, Vol.8 (20) |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 20 |
container_start_page | |
container_title | Solar RRL |
container_volume | 8 |
creator | Li, Guoming Ma, Zhu Yu, Tangjie Xuan, Ningqiang Huang, Zhangfeng Li, Yanlin Hou, Shanyue Liu, Qianyu You, Wei Chen, Yi Du, Zhuowei Yang, Junbo Yang, Qiang Tan, Li Huang, Cheng Xiang, Yan Mai, Yaohua Yu, Jian Long, Wei |
description | Element doping and interface modification strategy are effective methods to regulate the electrical properties of SnO
2
electron transport material, SnO
2
/perovskite (PVK) interface, and PVK crystal growth. Herein, rubidium fluoride (RbF) is introduced into SnO
2
colloidal dispersion, and then an ultra‐thin layer of 4‐carboxy‐3‐fluorobenzoboric acid (FBCA) is applied to the SnO
2
layer surface. This synergistic modification strategy can improve the electrical conductivity of the electron transport layer, increase the chemical connection of the buried interface, improve the crystallization and grain growth of PVK, and thus promote the performance and stability of devices. The results show that the PVK solar cells (PSCs) with the synergistic‐modified SnO
2
electron transport material (M‐SnO
2
) obtain an optimum power conversion efficiency of 21.92% and the unencapsulated PSCs sustain 91% and 87% of the original value, which stored in a nitrogen atmosphere and ambient atmosphere (25 ± 5 °C, 30–50% relative humidity) more than 1000 h, respectively. |
doi_str_mv | 10.1002/solr.202400122 |
format | Article |
fullrecord | <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1002_solr_202400122</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1002_solr_202400122</sourcerecordid><originalsourceid>FETCH-crossref_primary_10_1002_solr_2024001223</originalsourceid><addsrcrecordid>eNqVj8FKAzEURYMoWLTbrt8PdEzSYVrXpWIXpcK4cBdC5mV4NSby3ih05yf4jf0SLRRx29U9XDiLo9TE6Mpobe-kJK6strXWxtoLNbKzZj4194uXy398rcYiO_0r1PV80ZiRwi33PlOATUkYPhKCzx2sczndrU8DtPuM3JMMFA5f35vSUSTsoM1bsBALwypGCoR5gCfk8imvNCC0JXmGJaYkt-oq-iQ4Pu2Nqh5Wz8vHaeAiwhjdO9Ob570z2h173LHH_fXMzhZ-ALKDVOQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Organic Molecule and Inorganic Salt Synergistic‐Modified SnO 2 for Efficient Perovskite Solar Cells</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Li, Guoming ; Ma, Zhu ; Yu, Tangjie ; Xuan, Ningqiang ; Huang, Zhangfeng ; Li, Yanlin ; Hou, Shanyue ; Liu, Qianyu ; You, Wei ; Chen, Yi ; Du, Zhuowei ; Yang, Junbo ; Yang, Qiang ; Tan, Li ; Huang, Cheng ; Xiang, Yan ; Mai, Yaohua ; Yu, Jian ; Long, Wei</creator><creatorcontrib>Li, Guoming ; Ma, Zhu ; Yu, Tangjie ; Xuan, Ningqiang ; Huang, Zhangfeng ; Li, Yanlin ; Hou, Shanyue ; Liu, Qianyu ; You, Wei ; Chen, Yi ; Du, Zhuowei ; Yang, Junbo ; Yang, Qiang ; Tan, Li ; Huang, Cheng ; Xiang, Yan ; Mai, Yaohua ; Yu, Jian ; Long, Wei</creatorcontrib><description>Element doping and interface modification strategy are effective methods to regulate the electrical properties of SnO
2
electron transport material, SnO
2
/perovskite (PVK) interface, and PVK crystal growth. Herein, rubidium fluoride (RbF) is introduced into SnO
2
colloidal dispersion, and then an ultra‐thin layer of 4‐carboxy‐3‐fluorobenzoboric acid (FBCA) is applied to the SnO
2
layer surface. This synergistic modification strategy can improve the electrical conductivity of the electron transport layer, increase the chemical connection of the buried interface, improve the crystallization and grain growth of PVK, and thus promote the performance and stability of devices. The results show that the PVK solar cells (PSCs) with the synergistic‐modified SnO
2
electron transport material (M‐SnO
2
) obtain an optimum power conversion efficiency of 21.92% and the unencapsulated PSCs sustain 91% and 87% of the original value, which stored in a nitrogen atmosphere and ambient atmosphere (25 ± 5 °C, 30–50% relative humidity) more than 1000 h, respectively.</description><identifier>ISSN: 2367-198X</identifier><identifier>EISSN: 2367-198X</identifier><identifier>DOI: 10.1002/solr.202400122</identifier><language>eng</language><ispartof>Solar RRL, 2024-10, Vol.8 (20)</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-crossref_primary_10_1002_solr_2024001223</cites><orcidid>0000-0002-3795-361X ; 0000-0002-7418-6069 ; 0000-0002-0710-262X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Li, Guoming</creatorcontrib><creatorcontrib>Ma, Zhu</creatorcontrib><creatorcontrib>Yu, Tangjie</creatorcontrib><creatorcontrib>Xuan, Ningqiang</creatorcontrib><creatorcontrib>Huang, Zhangfeng</creatorcontrib><creatorcontrib>Li, Yanlin</creatorcontrib><creatorcontrib>Hou, Shanyue</creatorcontrib><creatorcontrib>Liu, Qianyu</creatorcontrib><creatorcontrib>You, Wei</creatorcontrib><creatorcontrib>Chen, Yi</creatorcontrib><creatorcontrib>Du, Zhuowei</creatorcontrib><creatorcontrib>Yang, Junbo</creatorcontrib><creatorcontrib>Yang, Qiang</creatorcontrib><creatorcontrib>Tan, Li</creatorcontrib><creatorcontrib>Huang, Cheng</creatorcontrib><creatorcontrib>Xiang, Yan</creatorcontrib><creatorcontrib>Mai, Yaohua</creatorcontrib><creatorcontrib>Yu, Jian</creatorcontrib><creatorcontrib>Long, Wei</creatorcontrib><title>Organic Molecule and Inorganic Salt Synergistic‐Modified SnO 2 for Efficient Perovskite Solar Cells</title><title>Solar RRL</title><description>Element doping and interface modification strategy are effective methods to regulate the electrical properties of SnO
2
electron transport material, SnO
2
/perovskite (PVK) interface, and PVK crystal growth. Herein, rubidium fluoride (RbF) is introduced into SnO
2
colloidal dispersion, and then an ultra‐thin layer of 4‐carboxy‐3‐fluorobenzoboric acid (FBCA) is applied to the SnO
2
layer surface. This synergistic modification strategy can improve the electrical conductivity of the electron transport layer, increase the chemical connection of the buried interface, improve the crystallization and grain growth of PVK, and thus promote the performance and stability of devices. The results show that the PVK solar cells (PSCs) with the synergistic‐modified SnO
2
electron transport material (M‐SnO
2
) obtain an optimum power conversion efficiency of 21.92% and the unencapsulated PSCs sustain 91% and 87% of the original value, which stored in a nitrogen atmosphere and ambient atmosphere (25 ± 5 °C, 30–50% relative humidity) more than 1000 h, respectively.</description><issn>2367-198X</issn><issn>2367-198X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqVj8FKAzEURYMoWLTbrt8PdEzSYVrXpWIXpcK4cBdC5mV4NSby3ih05yf4jf0SLRRx29U9XDiLo9TE6Mpobe-kJK6strXWxtoLNbKzZj4194uXy398rcYiO_0r1PV80ZiRwi33PlOATUkYPhKCzx2sczndrU8DtPuM3JMMFA5f35vSUSTsoM1bsBALwypGCoR5gCfk8imvNCC0JXmGJaYkt-oq-iQ4Pu2Nqh5Wz8vHaeAiwhjdO9Ob570z2h173LHH_fXMzhZ-ALKDVOQ</recordid><startdate>202410</startdate><enddate>202410</enddate><creator>Li, Guoming</creator><creator>Ma, Zhu</creator><creator>Yu, Tangjie</creator><creator>Xuan, Ningqiang</creator><creator>Huang, Zhangfeng</creator><creator>Li, Yanlin</creator><creator>Hou, Shanyue</creator><creator>Liu, Qianyu</creator><creator>You, Wei</creator><creator>Chen, Yi</creator><creator>Du, Zhuowei</creator><creator>Yang, Junbo</creator><creator>Yang, Qiang</creator><creator>Tan, Li</creator><creator>Huang, Cheng</creator><creator>Xiang, Yan</creator><creator>Mai, Yaohua</creator><creator>Yu, Jian</creator><creator>Long, Wei</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-3795-361X</orcidid><orcidid>https://orcid.org/0000-0002-7418-6069</orcidid><orcidid>https://orcid.org/0000-0002-0710-262X</orcidid></search><sort><creationdate>202410</creationdate><title>Organic Molecule and Inorganic Salt Synergistic‐Modified SnO 2 for Efficient Perovskite Solar Cells</title><author>Li, Guoming ; Ma, Zhu ; Yu, Tangjie ; Xuan, Ningqiang ; Huang, Zhangfeng ; Li, Yanlin ; Hou, Shanyue ; Liu, Qianyu ; You, Wei ; Chen, Yi ; Du, Zhuowei ; Yang, Junbo ; Yang, Qiang ; Tan, Li ; Huang, Cheng ; Xiang, Yan ; Mai, Yaohua ; Yu, Jian ; Long, Wei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-crossref_primary_10_1002_solr_2024001223</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Guoming</creatorcontrib><creatorcontrib>Ma, Zhu</creatorcontrib><creatorcontrib>Yu, Tangjie</creatorcontrib><creatorcontrib>Xuan, Ningqiang</creatorcontrib><creatorcontrib>Huang, Zhangfeng</creatorcontrib><creatorcontrib>Li, Yanlin</creatorcontrib><creatorcontrib>Hou, Shanyue</creatorcontrib><creatorcontrib>Liu, Qianyu</creatorcontrib><creatorcontrib>You, Wei</creatorcontrib><creatorcontrib>Chen, Yi</creatorcontrib><creatorcontrib>Du, Zhuowei</creatorcontrib><creatorcontrib>Yang, Junbo</creatorcontrib><creatorcontrib>Yang, Qiang</creatorcontrib><creatorcontrib>Tan, Li</creatorcontrib><creatorcontrib>Huang, Cheng</creatorcontrib><creatorcontrib>Xiang, Yan</creatorcontrib><creatorcontrib>Mai, Yaohua</creatorcontrib><creatorcontrib>Yu, Jian</creatorcontrib><creatorcontrib>Long, Wei</creatorcontrib><collection>CrossRef</collection><jtitle>Solar RRL</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Guoming</au><au>Ma, Zhu</au><au>Yu, Tangjie</au><au>Xuan, Ningqiang</au><au>Huang, Zhangfeng</au><au>Li, Yanlin</au><au>Hou, Shanyue</au><au>Liu, Qianyu</au><au>You, Wei</au><au>Chen, Yi</au><au>Du, Zhuowei</au><au>Yang, Junbo</au><au>Yang, Qiang</au><au>Tan, Li</au><au>Huang, Cheng</au><au>Xiang, Yan</au><au>Mai, Yaohua</au><au>Yu, Jian</au><au>Long, Wei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Organic Molecule and Inorganic Salt Synergistic‐Modified SnO 2 for Efficient Perovskite Solar Cells</atitle><jtitle>Solar RRL</jtitle><date>2024-10</date><risdate>2024</risdate><volume>8</volume><issue>20</issue><issn>2367-198X</issn><eissn>2367-198X</eissn><abstract>Element doping and interface modification strategy are effective methods to regulate the electrical properties of SnO
2
electron transport material, SnO
2
/perovskite (PVK) interface, and PVK crystal growth. Herein, rubidium fluoride (RbF) is introduced into SnO
2
colloidal dispersion, and then an ultra‐thin layer of 4‐carboxy‐3‐fluorobenzoboric acid (FBCA) is applied to the SnO
2
layer surface. This synergistic modification strategy can improve the electrical conductivity of the electron transport layer, increase the chemical connection of the buried interface, improve the crystallization and grain growth of PVK, and thus promote the performance and stability of devices. The results show that the PVK solar cells (PSCs) with the synergistic‐modified SnO
2
electron transport material (M‐SnO
2
) obtain an optimum power conversion efficiency of 21.92% and the unencapsulated PSCs sustain 91% and 87% of the original value, which stored in a nitrogen atmosphere and ambient atmosphere (25 ± 5 °C, 30–50% relative humidity) more than 1000 h, respectively.</abstract><doi>10.1002/solr.202400122</doi><orcidid>https://orcid.org/0000-0002-3795-361X</orcidid><orcidid>https://orcid.org/0000-0002-7418-6069</orcidid><orcidid>https://orcid.org/0000-0002-0710-262X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2367-198X |
ispartof | Solar RRL, 2024-10, Vol.8 (20) |
issn | 2367-198X 2367-198X |
language | eng |
recordid | cdi_crossref_primary_10_1002_solr_202400122 |
source | Wiley Online Library Journals Frontfile Complete |
title | Organic Molecule and Inorganic Salt Synergistic‐Modified SnO 2 for Efficient Perovskite Solar Cells |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-16T02%3A03%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Organic%20Molecule%20and%20Inorganic%20Salt%20Synergistic%E2%80%90Modified%20SnO%202%20for%20Efficient%20Perovskite%20Solar%20Cells&rft.jtitle=Solar%20RRL&rft.au=Li,%20Guoming&rft.date=2024-10&rft.volume=8&rft.issue=20&rft.issn=2367-198X&rft.eissn=2367-198X&rft_id=info:doi/10.1002/solr.202400122&rft_dat=%3Ccrossref%3E10_1002_solr_202400122%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |