Attitude Determination in Space with Ambient Light Sensors using Machine Learning for Solar Cell Characterization
Exploration of novel thin‐film solar cell technologies outreaches for their application in space. For extraterrestrial tests, irradiance conditions must be well determined to extract quantitative solar cell performances. Here, a new method for solar position determination is presented, based on para...
Gespeichert in:
Veröffentlicht in: | Solar RRL 2022-11, Vol.6 (11), p.n/a |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 11 |
container_start_page | |
container_title | Solar RRL |
container_volume | 6 |
creator | Reb, Lennart K. Böhmer, Michael Predeschly, Benjamin Spanier, Lukas V. Dreißigacker, Christoph Meyer, Andreas Müller-Buschbaum, Peter |
description | Exploration of novel thin‐film solar cell technologies outreaches for their application in space. For extraterrestrial tests, irradiance conditions must be well determined to extract quantitative solar cell performances. Here, a new method for solar position determination is presented, based on parallelized ambient light sensor measurements is presented obtained from the sounding rocket experiment Organic and Hybrid Solar Cells In Space during the MAPHEUS‐8 mission. The solar position evolution is optimized using stochastic and gradient‐based methods in a Bayesian approach. Comparison with independent positioning estimates shows compelling agreement, lying mostly within 5° deviation. The inclusion of a simple Earth irradiation component mitigates a small systematic offset. Further, solution uncertainties are estimated with Monte‐Carlo Markov‐chain sampling. The point‐source irradiation model's accuracy can compete with that of a camera‐based trajectory. During equatorial Sun positions, the method's precision appears even higher––the 1σ uncertainty of the derived solar position is as small as 3° for the effective angular deviation. This simple sensor array triangulation method being complementary to other attitude determination methods shows reasonable accuracies and allows implementation in systems of limited computational capabilities to determine the solar position or irradiance conditions for space or terrestrial solar cell applications.
A new method for solar position triangulation using ambient light sensors determines the solar irradiance for evaluating the performance of novel material solar cells in space. This approach offers high precision and allows easy adaption for any purpose of solar irradiance estimation to facilitate the characterization of real‐world test solar cell devices. |
doi_str_mv | 10.1002/solr.202200537 |
format | Article |
fullrecord | <record><control><sourceid>wiley_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_solr_202200537</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>SOLR202200537</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3297-1f41230424a3964e0f960745f083b768603bf72020c874feb4b81e8bf71f16513</originalsourceid><addsrcrecordid>eNqFkEtLAzEUhYMoWGq3rvMHWvNqklmW8QkjgqPgbsiMN53INFOTlFJ_vVMr6s7VvRzud7jnIHROyYwSwi5i34UZI4wRMufqCI0Yl2pKM_1y_Gc_RZMY38gACKG0pCP0vkjJpc0r4EtIEFbOm-R6j53H5do0gLcutXixqh34hAu3bBMuwcc-RLyJzi_xvWla5wEXYILfC7YPuOw7E3AOXYfz1gTTDN7u48v6DJ1Y00WYfM8xer6-espvp8XDzV2-KKYNZ9nwrhWUcSKYMDyTAojNJFFibonmtZJaEl5bNSQmjVbCQi1qTUEPGrVUzikfo9nBtwl9jAFstQ5uZcKuoqTad1btO6t-OhuA7ABsXQe7f66r8qF4_GU_AUMncUU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Attitude Determination in Space with Ambient Light Sensors using Machine Learning for Solar Cell Characterization</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Reb, Lennart K. ; Böhmer, Michael ; Predeschly, Benjamin ; Spanier, Lukas V. ; Dreißigacker, Christoph ; Meyer, Andreas ; Müller-Buschbaum, Peter</creator><creatorcontrib>Reb, Lennart K. ; Böhmer, Michael ; Predeschly, Benjamin ; Spanier, Lukas V. ; Dreißigacker, Christoph ; Meyer, Andreas ; Müller-Buschbaum, Peter</creatorcontrib><description>Exploration of novel thin‐film solar cell technologies outreaches for their application in space. For extraterrestrial tests, irradiance conditions must be well determined to extract quantitative solar cell performances. Here, a new method for solar position determination is presented, based on parallelized ambient light sensor measurements is presented obtained from the sounding rocket experiment Organic and Hybrid Solar Cells In Space during the MAPHEUS‐8 mission. The solar position evolution is optimized using stochastic and gradient‐based methods in a Bayesian approach. Comparison with independent positioning estimates shows compelling agreement, lying mostly within 5° deviation. The inclusion of a simple Earth irradiation component mitigates a small systematic offset. Further, solution uncertainties are estimated with Monte‐Carlo Markov‐chain sampling. The point‐source irradiation model's accuracy can compete with that of a camera‐based trajectory. During equatorial Sun positions, the method's precision appears even higher––the 1σ uncertainty of the derived solar position is as small as 3° for the effective angular deviation. This simple sensor array triangulation method being complementary to other attitude determination methods shows reasonable accuracies and allows implementation in systems of limited computational capabilities to determine the solar position or irradiance conditions for space or terrestrial solar cell applications.
A new method for solar position triangulation using ambient light sensors determines the solar irradiance for evaluating the performance of novel material solar cells in space. This approach offers high precision and allows easy adaption for any purpose of solar irradiance estimation to facilitate the characterization of real‐world test solar cell devices.</description><identifier>ISSN: 2367-198X</identifier><identifier>EISSN: 2367-198X</identifier><identifier>DOI: 10.1002/solr.202200537</identifier><language>eng</language><subject>attitude control ; light sensors ; machine learning ; solar cells ; space ; triangulation</subject><ispartof>Solar RRL, 2022-11, Vol.6 (11), p.n/a</ispartof><rights>2022 The Authors. Solar RRL published by Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3297-1f41230424a3964e0f960745f083b768603bf72020c874feb4b81e8bf71f16513</citedby><cites>FETCH-LOGICAL-c3297-1f41230424a3964e0f960745f083b768603bf72020c874feb4b81e8bf71f16513</cites><orcidid>0000-0002-9566-6088</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsolr.202200537$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsolr.202200537$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Reb, Lennart K.</creatorcontrib><creatorcontrib>Böhmer, Michael</creatorcontrib><creatorcontrib>Predeschly, Benjamin</creatorcontrib><creatorcontrib>Spanier, Lukas V.</creatorcontrib><creatorcontrib>Dreißigacker, Christoph</creatorcontrib><creatorcontrib>Meyer, Andreas</creatorcontrib><creatorcontrib>Müller-Buschbaum, Peter</creatorcontrib><title>Attitude Determination in Space with Ambient Light Sensors using Machine Learning for Solar Cell Characterization</title><title>Solar RRL</title><description>Exploration of novel thin‐film solar cell technologies outreaches for their application in space. For extraterrestrial tests, irradiance conditions must be well determined to extract quantitative solar cell performances. Here, a new method for solar position determination is presented, based on parallelized ambient light sensor measurements is presented obtained from the sounding rocket experiment Organic and Hybrid Solar Cells In Space during the MAPHEUS‐8 mission. The solar position evolution is optimized using stochastic and gradient‐based methods in a Bayesian approach. Comparison with independent positioning estimates shows compelling agreement, lying mostly within 5° deviation. The inclusion of a simple Earth irradiation component mitigates a small systematic offset. Further, solution uncertainties are estimated with Monte‐Carlo Markov‐chain sampling. The point‐source irradiation model's accuracy can compete with that of a camera‐based trajectory. During equatorial Sun positions, the method's precision appears even higher––the 1σ uncertainty of the derived solar position is as small as 3° for the effective angular deviation. This simple sensor array triangulation method being complementary to other attitude determination methods shows reasonable accuracies and allows implementation in systems of limited computational capabilities to determine the solar position or irradiance conditions for space or terrestrial solar cell applications.
A new method for solar position triangulation using ambient light sensors determines the solar irradiance for evaluating the performance of novel material solar cells in space. This approach offers high precision and allows easy adaption for any purpose of solar irradiance estimation to facilitate the characterization of real‐world test solar cell devices.</description><subject>attitude control</subject><subject>light sensors</subject><subject>machine learning</subject><subject>solar cells</subject><subject>space</subject><subject>triangulation</subject><issn>2367-198X</issn><issn>2367-198X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNqFkEtLAzEUhYMoWGq3rvMHWvNqklmW8QkjgqPgbsiMN53INFOTlFJ_vVMr6s7VvRzud7jnIHROyYwSwi5i34UZI4wRMufqCI0Yl2pKM_1y_Gc_RZMY38gACKG0pCP0vkjJpc0r4EtIEFbOm-R6j53H5do0gLcutXixqh34hAu3bBMuwcc-RLyJzi_xvWla5wEXYILfC7YPuOw7E3AOXYfz1gTTDN7u48v6DJ1Y00WYfM8xer6-espvp8XDzV2-KKYNZ9nwrhWUcSKYMDyTAojNJFFibonmtZJaEl5bNSQmjVbCQi1qTUEPGrVUzikfo9nBtwl9jAFstQ5uZcKuoqTad1btO6t-OhuA7ABsXQe7f66r8qF4_GU_AUMncUU</recordid><startdate>202211</startdate><enddate>202211</enddate><creator>Reb, Lennart K.</creator><creator>Böhmer, Michael</creator><creator>Predeschly, Benjamin</creator><creator>Spanier, Lukas V.</creator><creator>Dreißigacker, Christoph</creator><creator>Meyer, Andreas</creator><creator>Müller-Buschbaum, Peter</creator><scope>24P</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-9566-6088</orcidid></search><sort><creationdate>202211</creationdate><title>Attitude Determination in Space with Ambient Light Sensors using Machine Learning for Solar Cell Characterization</title><author>Reb, Lennart K. ; Böhmer, Michael ; Predeschly, Benjamin ; Spanier, Lukas V. ; Dreißigacker, Christoph ; Meyer, Andreas ; Müller-Buschbaum, Peter</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3297-1f41230424a3964e0f960745f083b768603bf72020c874feb4b81e8bf71f16513</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>attitude control</topic><topic>light sensors</topic><topic>machine learning</topic><topic>solar cells</topic><topic>space</topic><topic>triangulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Reb, Lennart K.</creatorcontrib><creatorcontrib>Böhmer, Michael</creatorcontrib><creatorcontrib>Predeschly, Benjamin</creatorcontrib><creatorcontrib>Spanier, Lukas V.</creatorcontrib><creatorcontrib>Dreißigacker, Christoph</creatorcontrib><creatorcontrib>Meyer, Andreas</creatorcontrib><creatorcontrib>Müller-Buschbaum, Peter</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>CrossRef</collection><jtitle>Solar RRL</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Reb, Lennart K.</au><au>Böhmer, Michael</au><au>Predeschly, Benjamin</au><au>Spanier, Lukas V.</au><au>Dreißigacker, Christoph</au><au>Meyer, Andreas</au><au>Müller-Buschbaum, Peter</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Attitude Determination in Space with Ambient Light Sensors using Machine Learning for Solar Cell Characterization</atitle><jtitle>Solar RRL</jtitle><date>2022-11</date><risdate>2022</risdate><volume>6</volume><issue>11</issue><epage>n/a</epage><issn>2367-198X</issn><eissn>2367-198X</eissn><abstract>Exploration of novel thin‐film solar cell technologies outreaches for their application in space. For extraterrestrial tests, irradiance conditions must be well determined to extract quantitative solar cell performances. Here, a new method for solar position determination is presented, based on parallelized ambient light sensor measurements is presented obtained from the sounding rocket experiment Organic and Hybrid Solar Cells In Space during the MAPHEUS‐8 mission. The solar position evolution is optimized using stochastic and gradient‐based methods in a Bayesian approach. Comparison with independent positioning estimates shows compelling agreement, lying mostly within 5° deviation. The inclusion of a simple Earth irradiation component mitigates a small systematic offset. Further, solution uncertainties are estimated with Monte‐Carlo Markov‐chain sampling. The point‐source irradiation model's accuracy can compete with that of a camera‐based trajectory. During equatorial Sun positions, the method's precision appears even higher––the 1σ uncertainty of the derived solar position is as small as 3° for the effective angular deviation. This simple sensor array triangulation method being complementary to other attitude determination methods shows reasonable accuracies and allows implementation in systems of limited computational capabilities to determine the solar position or irradiance conditions for space or terrestrial solar cell applications.
A new method for solar position triangulation using ambient light sensors determines the solar irradiance for evaluating the performance of novel material solar cells in space. This approach offers high precision and allows easy adaption for any purpose of solar irradiance estimation to facilitate the characterization of real‐world test solar cell devices.</abstract><doi>10.1002/solr.202200537</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-9566-6088</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2367-198X |
ispartof | Solar RRL, 2022-11, Vol.6 (11), p.n/a |
issn | 2367-198X 2367-198X |
language | eng |
recordid | cdi_crossref_primary_10_1002_solr_202200537 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | attitude control light sensors machine learning solar cells space triangulation |
title | Attitude Determination in Space with Ambient Light Sensors using Machine Learning for Solar Cell Characterization |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T16%3A37%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Attitude%20Determination%20in%20Space%20with%20Ambient%20Light%20Sensors%20using%20Machine%20Learning%20for%20Solar%20Cell%20Characterization&rft.jtitle=Solar%20RRL&rft.au=Reb,%20Lennart%20K.&rft.date=2022-11&rft.volume=6&rft.issue=11&rft.epage=n/a&rft.issn=2367-198X&rft.eissn=2367-198X&rft_id=info:doi/10.1002/solr.202200537&rft_dat=%3Cwiley_cross%3ESOLR202200537%3C/wiley_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |