Attitude Determination in Space with Ambient Light Sensors using Machine Learning for Solar Cell Characterization

Exploration of novel thin‐film solar cell technologies outreaches for their application in space. For extraterrestrial tests, irradiance conditions must be well determined to extract quantitative solar cell performances. Here, a new method for solar position determination is presented, based on para...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Solar RRL 2022-11, Vol.6 (11), p.n/a
Hauptverfasser: Reb, Lennart K., Böhmer, Michael, Predeschly, Benjamin, Spanier, Lukas V., Dreißigacker, Christoph, Meyer, Andreas, Müller-Buschbaum, Peter
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 11
container_start_page
container_title Solar RRL
container_volume 6
creator Reb, Lennart K.
Böhmer, Michael
Predeschly, Benjamin
Spanier, Lukas V.
Dreißigacker, Christoph
Meyer, Andreas
Müller-Buschbaum, Peter
description Exploration of novel thin‐film solar cell technologies outreaches for their application in space. For extraterrestrial tests, irradiance conditions must be well determined to extract quantitative solar cell performances. Here, a new method for solar position determination is presented, based on parallelized ambient light sensor measurements is presented obtained from the sounding rocket experiment Organic and Hybrid Solar Cells In Space during the MAPHEUS‐8 mission. The solar position evolution is optimized using stochastic and gradient‐based methods in a Bayesian approach. Comparison with independent positioning estimates shows compelling agreement, lying mostly within 5° deviation. The inclusion of a simple Earth irradiation component mitigates a small systematic offset. Further, solution uncertainties are estimated with Monte‐Carlo Markov‐chain sampling. The point‐source irradiation model's accuracy can compete with that of a camera‐based trajectory. During equatorial Sun positions, the method's precision appears even higher––the 1σ uncertainty of the derived solar position is as small as 3° for the effective angular deviation. This simple sensor array triangulation method being complementary to other attitude determination methods shows reasonable accuracies and allows implementation in systems of limited computational capabilities to determine the solar position or irradiance conditions for space or terrestrial solar cell applications. A new method for solar position triangulation using ambient light sensors determines the solar irradiance for evaluating the performance of novel material solar cells in space. This approach offers high precision and allows easy adaption for any purpose of solar irradiance estimation to facilitate the characterization of real‐world test solar cell devices.
doi_str_mv 10.1002/solr.202200537
format Article
fullrecord <record><control><sourceid>wiley_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_solr_202200537</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>SOLR202200537</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3297-1f41230424a3964e0f960745f083b768603bf72020c874feb4b81e8bf71f16513</originalsourceid><addsrcrecordid>eNqFkEtLAzEUhYMoWGq3rvMHWvNqklmW8QkjgqPgbsiMN53INFOTlFJ_vVMr6s7VvRzud7jnIHROyYwSwi5i34UZI4wRMufqCI0Yl2pKM_1y_Gc_RZMY38gACKG0pCP0vkjJpc0r4EtIEFbOm-R6j53H5do0gLcutXixqh34hAu3bBMuwcc-RLyJzi_xvWla5wEXYILfC7YPuOw7E3AOXYfz1gTTDN7u48v6DJ1Y00WYfM8xer6-espvp8XDzV2-KKYNZ9nwrhWUcSKYMDyTAojNJFFibonmtZJaEl5bNSQmjVbCQi1qTUEPGrVUzikfo9nBtwl9jAFstQ5uZcKuoqTad1btO6t-OhuA7ABsXQe7f66r8qF4_GU_AUMncUU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Attitude Determination in Space with Ambient Light Sensors using Machine Learning for Solar Cell Characterization</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Reb, Lennart K. ; Böhmer, Michael ; Predeschly, Benjamin ; Spanier, Lukas V. ; Dreißigacker, Christoph ; Meyer, Andreas ; Müller-Buschbaum, Peter</creator><creatorcontrib>Reb, Lennart K. ; Böhmer, Michael ; Predeschly, Benjamin ; Spanier, Lukas V. ; Dreißigacker, Christoph ; Meyer, Andreas ; Müller-Buschbaum, Peter</creatorcontrib><description>Exploration of novel thin‐film solar cell technologies outreaches for their application in space. For extraterrestrial tests, irradiance conditions must be well determined to extract quantitative solar cell performances. Here, a new method for solar position determination is presented, based on parallelized ambient light sensor measurements is presented obtained from the sounding rocket experiment Organic and Hybrid Solar Cells In Space during the MAPHEUS‐8 mission. The solar position evolution is optimized using stochastic and gradient‐based methods in a Bayesian approach. Comparison with independent positioning estimates shows compelling agreement, lying mostly within 5° deviation. The inclusion of a simple Earth irradiation component mitigates a small systematic offset. Further, solution uncertainties are estimated with Monte‐Carlo Markov‐chain sampling. The point‐source irradiation model's accuracy can compete with that of a camera‐based trajectory. During equatorial Sun positions, the method's precision appears even higher––the 1σ uncertainty of the derived solar position is as small as 3° for the effective angular deviation. This simple sensor array triangulation method being complementary to other attitude determination methods shows reasonable accuracies and allows implementation in systems of limited computational capabilities to determine the solar position or irradiance conditions for space or terrestrial solar cell applications. A new method for solar position triangulation using ambient light sensors determines the solar irradiance for evaluating the performance of novel material solar cells in space. This approach offers high precision and allows easy adaption for any purpose of solar irradiance estimation to facilitate the characterization of real‐world test solar cell devices.</description><identifier>ISSN: 2367-198X</identifier><identifier>EISSN: 2367-198X</identifier><identifier>DOI: 10.1002/solr.202200537</identifier><language>eng</language><subject>attitude control ; light sensors ; machine learning ; solar cells ; space ; triangulation</subject><ispartof>Solar RRL, 2022-11, Vol.6 (11), p.n/a</ispartof><rights>2022 The Authors. Solar RRL published by Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3297-1f41230424a3964e0f960745f083b768603bf72020c874feb4b81e8bf71f16513</citedby><cites>FETCH-LOGICAL-c3297-1f41230424a3964e0f960745f083b768603bf72020c874feb4b81e8bf71f16513</cites><orcidid>0000-0002-9566-6088</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsolr.202200537$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsolr.202200537$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Reb, Lennart K.</creatorcontrib><creatorcontrib>Böhmer, Michael</creatorcontrib><creatorcontrib>Predeschly, Benjamin</creatorcontrib><creatorcontrib>Spanier, Lukas V.</creatorcontrib><creatorcontrib>Dreißigacker, Christoph</creatorcontrib><creatorcontrib>Meyer, Andreas</creatorcontrib><creatorcontrib>Müller-Buschbaum, Peter</creatorcontrib><title>Attitude Determination in Space with Ambient Light Sensors using Machine Learning for Solar Cell Characterization</title><title>Solar RRL</title><description>Exploration of novel thin‐film solar cell technologies outreaches for their application in space. For extraterrestrial tests, irradiance conditions must be well determined to extract quantitative solar cell performances. Here, a new method for solar position determination is presented, based on parallelized ambient light sensor measurements is presented obtained from the sounding rocket experiment Organic and Hybrid Solar Cells In Space during the MAPHEUS‐8 mission. The solar position evolution is optimized using stochastic and gradient‐based methods in a Bayesian approach. Comparison with independent positioning estimates shows compelling agreement, lying mostly within 5° deviation. The inclusion of a simple Earth irradiation component mitigates a small systematic offset. Further, solution uncertainties are estimated with Monte‐Carlo Markov‐chain sampling. The point‐source irradiation model's accuracy can compete with that of a camera‐based trajectory. During equatorial Sun positions, the method's precision appears even higher––the 1σ uncertainty of the derived solar position is as small as 3° for the effective angular deviation. This simple sensor array triangulation method being complementary to other attitude determination methods shows reasonable accuracies and allows implementation in systems of limited computational capabilities to determine the solar position or irradiance conditions for space or terrestrial solar cell applications. A new method for solar position triangulation using ambient light sensors determines the solar irradiance for evaluating the performance of novel material solar cells in space. This approach offers high precision and allows easy adaption for any purpose of solar irradiance estimation to facilitate the characterization of real‐world test solar cell devices.</description><subject>attitude control</subject><subject>light sensors</subject><subject>machine learning</subject><subject>solar cells</subject><subject>space</subject><subject>triangulation</subject><issn>2367-198X</issn><issn>2367-198X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNqFkEtLAzEUhYMoWGq3rvMHWvNqklmW8QkjgqPgbsiMN53INFOTlFJ_vVMr6s7VvRzud7jnIHROyYwSwi5i34UZI4wRMufqCI0Yl2pKM_1y_Gc_RZMY38gACKG0pCP0vkjJpc0r4EtIEFbOm-R6j53H5do0gLcutXixqh34hAu3bBMuwcc-RLyJzi_xvWla5wEXYILfC7YPuOw7E3AOXYfz1gTTDN7u48v6DJ1Y00WYfM8xer6-espvp8XDzV2-KKYNZ9nwrhWUcSKYMDyTAojNJFFibonmtZJaEl5bNSQmjVbCQi1qTUEPGrVUzikfo9nBtwl9jAFstQ5uZcKuoqTad1btO6t-OhuA7ABsXQe7f66r8qF4_GU_AUMncUU</recordid><startdate>202211</startdate><enddate>202211</enddate><creator>Reb, Lennart K.</creator><creator>Böhmer, Michael</creator><creator>Predeschly, Benjamin</creator><creator>Spanier, Lukas V.</creator><creator>Dreißigacker, Christoph</creator><creator>Meyer, Andreas</creator><creator>Müller-Buschbaum, Peter</creator><scope>24P</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-9566-6088</orcidid></search><sort><creationdate>202211</creationdate><title>Attitude Determination in Space with Ambient Light Sensors using Machine Learning for Solar Cell Characterization</title><author>Reb, Lennart K. ; Böhmer, Michael ; Predeschly, Benjamin ; Spanier, Lukas V. ; Dreißigacker, Christoph ; Meyer, Andreas ; Müller-Buschbaum, Peter</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3297-1f41230424a3964e0f960745f083b768603bf72020c874feb4b81e8bf71f16513</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>attitude control</topic><topic>light sensors</topic><topic>machine learning</topic><topic>solar cells</topic><topic>space</topic><topic>triangulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Reb, Lennart K.</creatorcontrib><creatorcontrib>Böhmer, Michael</creatorcontrib><creatorcontrib>Predeschly, Benjamin</creatorcontrib><creatorcontrib>Spanier, Lukas V.</creatorcontrib><creatorcontrib>Dreißigacker, Christoph</creatorcontrib><creatorcontrib>Meyer, Andreas</creatorcontrib><creatorcontrib>Müller-Buschbaum, Peter</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>CrossRef</collection><jtitle>Solar RRL</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Reb, Lennart K.</au><au>Böhmer, Michael</au><au>Predeschly, Benjamin</au><au>Spanier, Lukas V.</au><au>Dreißigacker, Christoph</au><au>Meyer, Andreas</au><au>Müller-Buschbaum, Peter</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Attitude Determination in Space with Ambient Light Sensors using Machine Learning for Solar Cell Characterization</atitle><jtitle>Solar RRL</jtitle><date>2022-11</date><risdate>2022</risdate><volume>6</volume><issue>11</issue><epage>n/a</epage><issn>2367-198X</issn><eissn>2367-198X</eissn><abstract>Exploration of novel thin‐film solar cell technologies outreaches for their application in space. For extraterrestrial tests, irradiance conditions must be well determined to extract quantitative solar cell performances. Here, a new method for solar position determination is presented, based on parallelized ambient light sensor measurements is presented obtained from the sounding rocket experiment Organic and Hybrid Solar Cells In Space during the MAPHEUS‐8 mission. The solar position evolution is optimized using stochastic and gradient‐based methods in a Bayesian approach. Comparison with independent positioning estimates shows compelling agreement, lying mostly within 5° deviation. The inclusion of a simple Earth irradiation component mitigates a small systematic offset. Further, solution uncertainties are estimated with Monte‐Carlo Markov‐chain sampling. The point‐source irradiation model's accuracy can compete with that of a camera‐based trajectory. During equatorial Sun positions, the method's precision appears even higher––the 1σ uncertainty of the derived solar position is as small as 3° for the effective angular deviation. This simple sensor array triangulation method being complementary to other attitude determination methods shows reasonable accuracies and allows implementation in systems of limited computational capabilities to determine the solar position or irradiance conditions for space or terrestrial solar cell applications. A new method for solar position triangulation using ambient light sensors determines the solar irradiance for evaluating the performance of novel material solar cells in space. This approach offers high precision and allows easy adaption for any purpose of solar irradiance estimation to facilitate the characterization of real‐world test solar cell devices.</abstract><doi>10.1002/solr.202200537</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-9566-6088</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2367-198X
ispartof Solar RRL, 2022-11, Vol.6 (11), p.n/a
issn 2367-198X
2367-198X
language eng
recordid cdi_crossref_primary_10_1002_solr_202200537
source Wiley Online Library Journals Frontfile Complete
subjects attitude control
light sensors
machine learning
solar cells
space
triangulation
title Attitude Determination in Space with Ambient Light Sensors using Machine Learning for Solar Cell Characterization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T16%3A37%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Attitude%20Determination%20in%20Space%20with%20Ambient%20Light%20Sensors%20using%20Machine%20Learning%20for%20Solar%20Cell%20Characterization&rft.jtitle=Solar%20RRL&rft.au=Reb,%20Lennart%20K.&rft.date=2022-11&rft.volume=6&rft.issue=11&rft.epage=n/a&rft.issn=2367-198X&rft.eissn=2367-198X&rft_id=info:doi/10.1002/solr.202200537&rft_dat=%3Cwiley_cross%3ESOLR202200537%3C/wiley_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true