Suppressed Layered-to-Spinel Phase Transition in δ-MnO 2 via van der Waals Interaction for Highly Stable Zn/MnO 2 Batteries

Although birnessite-type manganese dioxide (δ-MnO ) with a large interlayer spacing (≈7 Å) is a promising cathode candidate for aqueous Zn/MnO batteries, the poor structural stability associated with Zn intercalation/deintercalation limits its further practical application. Herein, δ-MnO ultrathin n...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Small methods 2022-12, Vol.6 (12), p.e2201142
Hauptverfasser: Qiu, Ce, Liu, Jia, Liu, Hanghui, Zhu, Xiaohui, Xue, Liang, Li, Shuang, Ni, Mingzhu, Zhao, Yang, Wang, Tong, Savilov, Serguei V, Aldoshin, Sergey M, Xia, Hui
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 12
container_start_page e2201142
container_title Small methods
container_volume 6
creator Qiu, Ce
Liu, Jia
Liu, Hanghui
Zhu, Xiaohui
Xue, Liang
Li, Shuang
Ni, Mingzhu
Zhao, Yang
Wang, Tong
Savilov, Serguei V
Aldoshin, Sergey M
Xia, Hui
description Although birnessite-type manganese dioxide (δ-MnO ) with a large interlayer spacing (≈7 Å) is a promising cathode candidate for aqueous Zn/MnO batteries, the poor structural stability associated with Zn intercalation/deintercalation limits its further practical application. Herein, δ-MnO ultrathin nanosheets are coupled with reduced graphene oxide (rGO) via van der Waals (vdW) self-assembly in a vacuum freeze-drying process. It is interesting to find that the presence of vdW interaction between δ-MnO and rGO can effectively suppress the layered-to-spinel phase transition in δ-MnO during cycling. As a result, the coupled δ-MnO /rGO hybrid cathode with a sandwich-like heterostructure exhibits remarkable cycle performance with 80.1% capacity retained after 3000 cycles at 2.0 A g . The first principle calculations demonstrate that the strong interfacial interaction between δ-MnO and rGO results in improved electron transfer and strengthened layered structure for δ-MnO . This work establishes a viable strategy to mitigate the adverse layered-to-spinel phase transition in layered manganese oxide in aqueous energy storage systems.
doi_str_mv 10.1002/smtd.202201142
format Article
fullrecord <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_smtd_202201142</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>36333209</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1079-7c9d21c0056aa6d44770d9a9f33e44258a0247b3c8c24e0683e55632dd42205a3</originalsourceid><addsrcrecordid>eNpNkM1OwkAURidGIwTZujTzAoX567RdKlEhwWACxsRNc-ncypgyNDOVhMTH8jl8JosocXXv4pxvcQi55GzAGRPDsG7MQDAhGOdKnJCukFpHmWbp6b-_Q_ohvLFWYFzGgp-TjtRSSsGyLvmYv9e1xxDQ0Cns0KOJmk00r63Dij6uICBdeHDBNnbjqHX06zN6cDMq6NYC3YKjBj19BqgCnbgGPRQ_ZLnxdGxfV9WOzhtYVkhf3PAg3kDTchbDBTkrWw_7v7dHnu5uF6NxNJ3dT0bX06jgLMmipMiM4AVjsQbQRqkkYSaDrJQSlRJxCkyoZCmLtBAKmU4lxrGWwhjVpolB9sjgsFv4TQgey7z2dg1-l3OW70vm-5L5sWQrXB2E-n25RnPE_7rJb2TyblU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Suppressed Layered-to-Spinel Phase Transition in δ-MnO 2 via van der Waals Interaction for Highly Stable Zn/MnO 2 Batteries</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Qiu, Ce ; Liu, Jia ; Liu, Hanghui ; Zhu, Xiaohui ; Xue, Liang ; Li, Shuang ; Ni, Mingzhu ; Zhao, Yang ; Wang, Tong ; Savilov, Serguei V ; Aldoshin, Sergey M ; Xia, Hui</creator><creatorcontrib>Qiu, Ce ; Liu, Jia ; Liu, Hanghui ; Zhu, Xiaohui ; Xue, Liang ; Li, Shuang ; Ni, Mingzhu ; Zhao, Yang ; Wang, Tong ; Savilov, Serguei V ; Aldoshin, Sergey M ; Xia, Hui</creatorcontrib><description>Although birnessite-type manganese dioxide (δ-MnO ) with a large interlayer spacing (≈7 Å) is a promising cathode candidate for aqueous Zn/MnO batteries, the poor structural stability associated with Zn intercalation/deintercalation limits its further practical application. Herein, δ-MnO ultrathin nanosheets are coupled with reduced graphene oxide (rGO) via van der Waals (vdW) self-assembly in a vacuum freeze-drying process. It is interesting to find that the presence of vdW interaction between δ-MnO and rGO can effectively suppress the layered-to-spinel phase transition in δ-MnO during cycling. As a result, the coupled δ-MnO /rGO hybrid cathode with a sandwich-like heterostructure exhibits remarkable cycle performance with 80.1% capacity retained after 3000 cycles at 2.0 A g . The first principle calculations demonstrate that the strong interfacial interaction between δ-MnO and rGO results in improved electron transfer and strengthened layered structure for δ-MnO . This work establishes a viable strategy to mitigate the adverse layered-to-spinel phase transition in layered manganese oxide in aqueous energy storage systems.</description><identifier>ISSN: 2366-9608</identifier><identifier>EISSN: 2366-9608</identifier><identifier>DOI: 10.1002/smtd.202201142</identifier><identifier>PMID: 36333209</identifier><language>eng</language><publisher>Germany</publisher><ispartof>Small methods, 2022-12, Vol.6 (12), p.e2201142</ispartof><rights>2022 Wiley-VCH GmbH.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1079-7c9d21c0056aa6d44770d9a9f33e44258a0247b3c8c24e0683e55632dd42205a3</citedby><cites>FETCH-LOGICAL-c1079-7c9d21c0056aa6d44770d9a9f33e44258a0247b3c8c24e0683e55632dd42205a3</cites><orcidid>0000-0002-2517-2410</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36333209$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Qiu, Ce</creatorcontrib><creatorcontrib>Liu, Jia</creatorcontrib><creatorcontrib>Liu, Hanghui</creatorcontrib><creatorcontrib>Zhu, Xiaohui</creatorcontrib><creatorcontrib>Xue, Liang</creatorcontrib><creatorcontrib>Li, Shuang</creatorcontrib><creatorcontrib>Ni, Mingzhu</creatorcontrib><creatorcontrib>Zhao, Yang</creatorcontrib><creatorcontrib>Wang, Tong</creatorcontrib><creatorcontrib>Savilov, Serguei V</creatorcontrib><creatorcontrib>Aldoshin, Sergey M</creatorcontrib><creatorcontrib>Xia, Hui</creatorcontrib><title>Suppressed Layered-to-Spinel Phase Transition in δ-MnO 2 via van der Waals Interaction for Highly Stable Zn/MnO 2 Batteries</title><title>Small methods</title><addtitle>Small Methods</addtitle><description>Although birnessite-type manganese dioxide (δ-MnO ) with a large interlayer spacing (≈7 Å) is a promising cathode candidate for aqueous Zn/MnO batteries, the poor structural stability associated with Zn intercalation/deintercalation limits its further practical application. Herein, δ-MnO ultrathin nanosheets are coupled with reduced graphene oxide (rGO) via van der Waals (vdW) self-assembly in a vacuum freeze-drying process. It is interesting to find that the presence of vdW interaction between δ-MnO and rGO can effectively suppress the layered-to-spinel phase transition in δ-MnO during cycling. As a result, the coupled δ-MnO /rGO hybrid cathode with a sandwich-like heterostructure exhibits remarkable cycle performance with 80.1% capacity retained after 3000 cycles at 2.0 A g . The first principle calculations demonstrate that the strong interfacial interaction between δ-MnO and rGO results in improved electron transfer and strengthened layered structure for δ-MnO . This work establishes a viable strategy to mitigate the adverse layered-to-spinel phase transition in layered manganese oxide in aqueous energy storage systems.</description><issn>2366-9608</issn><issn>2366-9608</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpNkM1OwkAURidGIwTZujTzAoX567RdKlEhwWACxsRNc-ncypgyNDOVhMTH8jl8JosocXXv4pxvcQi55GzAGRPDsG7MQDAhGOdKnJCukFpHmWbp6b-_Q_ohvLFWYFzGgp-TjtRSSsGyLvmYv9e1xxDQ0Cns0KOJmk00r63Dij6uICBdeHDBNnbjqHX06zN6cDMq6NYC3YKjBj19BqgCnbgGPRQ_ZLnxdGxfV9WOzhtYVkhf3PAg3kDTchbDBTkrWw_7v7dHnu5uF6NxNJ3dT0bX06jgLMmipMiM4AVjsQbQRqkkYSaDrJQSlRJxCkyoZCmLtBAKmU4lxrGWwhjVpolB9sjgsFv4TQgey7z2dg1-l3OW70vm-5L5sWQrXB2E-n25RnPE_7rJb2TyblU</recordid><startdate>202212</startdate><enddate>202212</enddate><creator>Qiu, Ce</creator><creator>Liu, Jia</creator><creator>Liu, Hanghui</creator><creator>Zhu, Xiaohui</creator><creator>Xue, Liang</creator><creator>Li, Shuang</creator><creator>Ni, Mingzhu</creator><creator>Zhao, Yang</creator><creator>Wang, Tong</creator><creator>Savilov, Serguei V</creator><creator>Aldoshin, Sergey M</creator><creator>Xia, Hui</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-2517-2410</orcidid></search><sort><creationdate>202212</creationdate><title>Suppressed Layered-to-Spinel Phase Transition in δ-MnO 2 via van der Waals Interaction for Highly Stable Zn/MnO 2 Batteries</title><author>Qiu, Ce ; Liu, Jia ; Liu, Hanghui ; Zhu, Xiaohui ; Xue, Liang ; Li, Shuang ; Ni, Mingzhu ; Zhao, Yang ; Wang, Tong ; Savilov, Serguei V ; Aldoshin, Sergey M ; Xia, Hui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1079-7c9d21c0056aa6d44770d9a9f33e44258a0247b3c8c24e0683e55632dd42205a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Qiu, Ce</creatorcontrib><creatorcontrib>Liu, Jia</creatorcontrib><creatorcontrib>Liu, Hanghui</creatorcontrib><creatorcontrib>Zhu, Xiaohui</creatorcontrib><creatorcontrib>Xue, Liang</creatorcontrib><creatorcontrib>Li, Shuang</creatorcontrib><creatorcontrib>Ni, Mingzhu</creatorcontrib><creatorcontrib>Zhao, Yang</creatorcontrib><creatorcontrib>Wang, Tong</creatorcontrib><creatorcontrib>Savilov, Serguei V</creatorcontrib><creatorcontrib>Aldoshin, Sergey M</creatorcontrib><creatorcontrib>Xia, Hui</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><jtitle>Small methods</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Qiu, Ce</au><au>Liu, Jia</au><au>Liu, Hanghui</au><au>Zhu, Xiaohui</au><au>Xue, Liang</au><au>Li, Shuang</au><au>Ni, Mingzhu</au><au>Zhao, Yang</au><au>Wang, Tong</au><au>Savilov, Serguei V</au><au>Aldoshin, Sergey M</au><au>Xia, Hui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Suppressed Layered-to-Spinel Phase Transition in δ-MnO 2 via van der Waals Interaction for Highly Stable Zn/MnO 2 Batteries</atitle><jtitle>Small methods</jtitle><addtitle>Small Methods</addtitle><date>2022-12</date><risdate>2022</risdate><volume>6</volume><issue>12</issue><spage>e2201142</spage><pages>e2201142-</pages><issn>2366-9608</issn><eissn>2366-9608</eissn><abstract>Although birnessite-type manganese dioxide (δ-MnO ) with a large interlayer spacing (≈7 Å) is a promising cathode candidate for aqueous Zn/MnO batteries, the poor structural stability associated with Zn intercalation/deintercalation limits its further practical application. Herein, δ-MnO ultrathin nanosheets are coupled with reduced graphene oxide (rGO) via van der Waals (vdW) self-assembly in a vacuum freeze-drying process. It is interesting to find that the presence of vdW interaction between δ-MnO and rGO can effectively suppress the layered-to-spinel phase transition in δ-MnO during cycling. As a result, the coupled δ-MnO /rGO hybrid cathode with a sandwich-like heterostructure exhibits remarkable cycle performance with 80.1% capacity retained after 3000 cycles at 2.0 A g . The first principle calculations demonstrate that the strong interfacial interaction between δ-MnO and rGO results in improved electron transfer and strengthened layered structure for δ-MnO . This work establishes a viable strategy to mitigate the adverse layered-to-spinel phase transition in layered manganese oxide in aqueous energy storage systems.</abstract><cop>Germany</cop><pmid>36333209</pmid><doi>10.1002/smtd.202201142</doi><orcidid>https://orcid.org/0000-0002-2517-2410</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2366-9608
ispartof Small methods, 2022-12, Vol.6 (12), p.e2201142
issn 2366-9608
2366-9608
language eng
recordid cdi_crossref_primary_10_1002_smtd_202201142
source Wiley Online Library Journals Frontfile Complete
title Suppressed Layered-to-Spinel Phase Transition in δ-MnO 2 via van der Waals Interaction for Highly Stable Zn/MnO 2 Batteries
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T07%3A32%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Suppressed%20Layered-to-Spinel%20Phase%20Transition%20in%20%CE%B4-MnO%202%20via%20van%20der%20Waals%20Interaction%20for%20Highly%20Stable%20Zn/MnO%202%20Batteries&rft.jtitle=Small%20methods&rft.au=Qiu,%20Ce&rft.date=2022-12&rft.volume=6&rft.issue=12&rft.spage=e2201142&rft.pages=e2201142-&rft.issn=2366-9608&rft.eissn=2366-9608&rft_id=info:doi/10.1002/smtd.202201142&rft_dat=%3Cpubmed_cross%3E36333209%3C/pubmed_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/36333209&rfr_iscdi=true