Deciphering the Degradation Mechanisms and Realize High-Voltage Stability of A 3 V 2 (PO 4 ) 3 (A = Li + , Na + ) in Aqueous Dual-Ion Batteries
Polyanionic A V (PO ) (A = Li , Na ) with open channels have been extensively utilized as cathode materials for aqueous zinc-metal batteries (AZMBs), whereas suffering from severe capacity fading and rapid operation voltage decay during cycling. when used as In this work, it is disclosed that the ra...
Gespeichert in:
Veröffentlicht in: | Small (Weinheim an der Bergstrasse, Germany) Germany), 2024-11, Vol.20 (47), p.e2405171 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 47 |
container_start_page | e2405171 |
container_title | Small (Weinheim an der Bergstrasse, Germany) |
container_volume | 20 |
creator | Dong, Chongrui Chen, Yuanjing Ding, Yan Pu, Xiangjun Cao, Yuliang Ma, Zhongyun Chen, Zhongxue |
description | Polyanionic A
V
(PO
)
(A = Li
, Na
) with open channels have been extensively utilized as cathode materials for aqueous zinc-metal batteries (AZMBs), whereas suffering from severe capacity fading and rapid operation voltage decay during cycling. when used as In this work, it is disclosed that the rapid degradation is induced by an irreversible phase change from electrochemical active Li
V
(PO
)
to nonactive monoclinic LiZnPO
, as well as active Na
V
(PO
)
to nonactive rhombic Zn
(PO
)
(H
O)
. Subsequently, a rational dual-cation (Al-Fe) doping strategy is proposed to suppress these detrimental transformations. Such dual-cation doping entails stronger P-O and V-O bonds, thus stabilizing the initial polyanionic structures. Consequently, the optimized member of Li
V
Al
Fe
(PO
)
(LVAFP) exhibits desirable cycling stability (1000 cycles, 68.5% capacity retention) and notable rate capability (92.1% of the initial capacity at 10 C). Moreover, the dual-cation doping methodology is successfully extended to improve the stability of Na
V
(PO
)
cathode in aqueous dual-ion batteries, signifying the versatility and feasibility of this strategy. The comprehensive identification of local structural evolution in these polyanions will broaden the scope of designing high-performance alkali-vanadyl-phosphates for multivalent aqueous batteries. |
doi_str_mv | 10.1002/smll.202405171 |
format | Article |
fullrecord | <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_smll_202405171</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>39165056</sourcerecordid><originalsourceid>FETCH-LOGICAL-c626-99806fc311ad23eef512e0d8a6ef910f6815ba1b135d18dde14ec4bb33e5cbe33</originalsourceid><addsrcrecordid>eNo9kMFOwkAQhjdGI4pePZo5QrS4s9sWevBQQYUExSjh2mzbKawpLXbbA76Fb8Cz8GSWoJz-mWT-mX8-xq6Qd5BzcWeWadoRXNjcwS4esTN0UVpuT3jHhxp5g50b88m5RGF3T1lDeug63HHP2M-AIr1aUKGzOZQLggHNCxWrUucZvFC0UJk2SwMqi-GdVKq_CYZ6vrBmeVqqOcFHqUKd6nINeQI-SJiBgNbbBGxo113L327ut5uxhhu4hVdVSxt0Bv5XRXllYFCp1BrVtx5UWdYpyFywk0Slhi7_tMmmT4_T_tAaT55HfX9sRa5wLc_rcTeJJKKKhSRKHBTE455yKfGQJ_XXTqgwROnE2ItjQpsiOwylJCcKScom6-zXRkVuTEFJsCr0UhXrAHmwQxvs0AYHtLXhem9YVeGS4sP4P0v5C9SocwQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Deciphering the Degradation Mechanisms and Realize High-Voltage Stability of A 3 V 2 (PO 4 ) 3 (A = Li + , Na + ) in Aqueous Dual-Ion Batteries</title><source>Access via Wiley Online Library</source><creator>Dong, Chongrui ; Chen, Yuanjing ; Ding, Yan ; Pu, Xiangjun ; Cao, Yuliang ; Ma, Zhongyun ; Chen, Zhongxue</creator><creatorcontrib>Dong, Chongrui ; Chen, Yuanjing ; Ding, Yan ; Pu, Xiangjun ; Cao, Yuliang ; Ma, Zhongyun ; Chen, Zhongxue</creatorcontrib><description>Polyanionic A
V
(PO
)
(A = Li
, Na
) with open channels have been extensively utilized as cathode materials for aqueous zinc-metal batteries (AZMBs), whereas suffering from severe capacity fading and rapid operation voltage decay during cycling. when used as In this work, it is disclosed that the rapid degradation is induced by an irreversible phase change from electrochemical active Li
V
(PO
)
to nonactive monoclinic LiZnPO
, as well as active Na
V
(PO
)
to nonactive rhombic Zn
(PO
)
(H
O)
. Subsequently, a rational dual-cation (Al-Fe) doping strategy is proposed to suppress these detrimental transformations. Such dual-cation doping entails stronger P-O and V-O bonds, thus stabilizing the initial polyanionic structures. Consequently, the optimized member of Li
V
Al
Fe
(PO
)
(LVAFP) exhibits desirable cycling stability (1000 cycles, 68.5% capacity retention) and notable rate capability (92.1% of the initial capacity at 10 C). Moreover, the dual-cation doping methodology is successfully extended to improve the stability of Na
V
(PO
)
cathode in aqueous dual-ion batteries, signifying the versatility and feasibility of this strategy. The comprehensive identification of local structural evolution in these polyanions will broaden the scope of designing high-performance alkali-vanadyl-phosphates for multivalent aqueous batteries.</description><identifier>ISSN: 1613-6810</identifier><identifier>EISSN: 1613-6829</identifier><identifier>DOI: 10.1002/smll.202405171</identifier><identifier>PMID: 39165056</identifier><language>eng</language><publisher>Germany</publisher><ispartof>Small (Weinheim an der Bergstrasse, Germany), 2024-11, Vol.20 (47), p.e2405171</ispartof><rights>2024 Wiley‐VCH GmbH.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c626-99806fc311ad23eef512e0d8a6ef910f6815ba1b135d18dde14ec4bb33e5cbe33</cites><orcidid>0000-0002-1526-7336</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,27926,27927</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39165056$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dong, Chongrui</creatorcontrib><creatorcontrib>Chen, Yuanjing</creatorcontrib><creatorcontrib>Ding, Yan</creatorcontrib><creatorcontrib>Pu, Xiangjun</creatorcontrib><creatorcontrib>Cao, Yuliang</creatorcontrib><creatorcontrib>Ma, Zhongyun</creatorcontrib><creatorcontrib>Chen, Zhongxue</creatorcontrib><title>Deciphering the Degradation Mechanisms and Realize High-Voltage Stability of A 3 V 2 (PO 4 ) 3 (A = Li + , Na + ) in Aqueous Dual-Ion Batteries</title><title>Small (Weinheim an der Bergstrasse, Germany)</title><addtitle>Small</addtitle><description>Polyanionic A
V
(PO
)
(A = Li
, Na
) with open channels have been extensively utilized as cathode materials for aqueous zinc-metal batteries (AZMBs), whereas suffering from severe capacity fading and rapid operation voltage decay during cycling. when used as In this work, it is disclosed that the rapid degradation is induced by an irreversible phase change from electrochemical active Li
V
(PO
)
to nonactive monoclinic LiZnPO
, as well as active Na
V
(PO
)
to nonactive rhombic Zn
(PO
)
(H
O)
. Subsequently, a rational dual-cation (Al-Fe) doping strategy is proposed to suppress these detrimental transformations. Such dual-cation doping entails stronger P-O and V-O bonds, thus stabilizing the initial polyanionic structures. Consequently, the optimized member of Li
V
Al
Fe
(PO
)
(LVAFP) exhibits desirable cycling stability (1000 cycles, 68.5% capacity retention) and notable rate capability (92.1% of the initial capacity at 10 C). Moreover, the dual-cation doping methodology is successfully extended to improve the stability of Na
V
(PO
)
cathode in aqueous dual-ion batteries, signifying the versatility and feasibility of this strategy. The comprehensive identification of local structural evolution in these polyanions will broaden the scope of designing high-performance alkali-vanadyl-phosphates for multivalent aqueous batteries.</description><issn>1613-6810</issn><issn>1613-6829</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNo9kMFOwkAQhjdGI4pePZo5QrS4s9sWevBQQYUExSjh2mzbKawpLXbbA76Fb8Cz8GSWoJz-mWT-mX8-xq6Qd5BzcWeWadoRXNjcwS4esTN0UVpuT3jHhxp5g50b88m5RGF3T1lDeug63HHP2M-AIr1aUKGzOZQLggHNCxWrUucZvFC0UJk2SwMqi-GdVKq_CYZ6vrBmeVqqOcFHqUKd6nINeQI-SJiBgNbbBGxo113L327ut5uxhhu4hVdVSxt0Bv5XRXllYFCp1BrVtx5UWdYpyFywk0Slhi7_tMmmT4_T_tAaT55HfX9sRa5wLc_rcTeJJKKKhSRKHBTE455yKfGQJ_XXTqgwROnE2ItjQpsiOwylJCcKScom6-zXRkVuTEFJsCr0UhXrAHmwQxvs0AYHtLXhem9YVeGS4sP4P0v5C9SocwQ</recordid><startdate>202411</startdate><enddate>202411</enddate><creator>Dong, Chongrui</creator><creator>Chen, Yuanjing</creator><creator>Ding, Yan</creator><creator>Pu, Xiangjun</creator><creator>Cao, Yuliang</creator><creator>Ma, Zhongyun</creator><creator>Chen, Zhongxue</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-1526-7336</orcidid></search><sort><creationdate>202411</creationdate><title>Deciphering the Degradation Mechanisms and Realize High-Voltage Stability of A 3 V 2 (PO 4 ) 3 (A = Li + , Na + ) in Aqueous Dual-Ion Batteries</title><author>Dong, Chongrui ; Chen, Yuanjing ; Ding, Yan ; Pu, Xiangjun ; Cao, Yuliang ; Ma, Zhongyun ; Chen, Zhongxue</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c626-99806fc311ad23eef512e0d8a6ef910f6815ba1b135d18dde14ec4bb33e5cbe33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dong, Chongrui</creatorcontrib><creatorcontrib>Chen, Yuanjing</creatorcontrib><creatorcontrib>Ding, Yan</creatorcontrib><creatorcontrib>Pu, Xiangjun</creatorcontrib><creatorcontrib>Cao, Yuliang</creatorcontrib><creatorcontrib>Ma, Zhongyun</creatorcontrib><creatorcontrib>Chen, Zhongxue</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dong, Chongrui</au><au>Chen, Yuanjing</au><au>Ding, Yan</au><au>Pu, Xiangjun</au><au>Cao, Yuliang</au><au>Ma, Zhongyun</au><au>Chen, Zhongxue</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deciphering the Degradation Mechanisms and Realize High-Voltage Stability of A 3 V 2 (PO 4 ) 3 (A = Li + , Na + ) in Aqueous Dual-Ion Batteries</atitle><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle><addtitle>Small</addtitle><date>2024-11</date><risdate>2024</risdate><volume>20</volume><issue>47</issue><spage>e2405171</spage><pages>e2405171-</pages><issn>1613-6810</issn><eissn>1613-6829</eissn><abstract>Polyanionic A
V
(PO
)
(A = Li
, Na
) with open channels have been extensively utilized as cathode materials for aqueous zinc-metal batteries (AZMBs), whereas suffering from severe capacity fading and rapid operation voltage decay during cycling. when used as In this work, it is disclosed that the rapid degradation is induced by an irreversible phase change from electrochemical active Li
V
(PO
)
to nonactive monoclinic LiZnPO
, as well as active Na
V
(PO
)
to nonactive rhombic Zn
(PO
)
(H
O)
. Subsequently, a rational dual-cation (Al-Fe) doping strategy is proposed to suppress these detrimental transformations. Such dual-cation doping entails stronger P-O and V-O bonds, thus stabilizing the initial polyanionic structures. Consequently, the optimized member of Li
V
Al
Fe
(PO
)
(LVAFP) exhibits desirable cycling stability (1000 cycles, 68.5% capacity retention) and notable rate capability (92.1% of the initial capacity at 10 C). Moreover, the dual-cation doping methodology is successfully extended to improve the stability of Na
V
(PO
)
cathode in aqueous dual-ion batteries, signifying the versatility and feasibility of this strategy. The comprehensive identification of local structural evolution in these polyanions will broaden the scope of designing high-performance alkali-vanadyl-phosphates for multivalent aqueous batteries.</abstract><cop>Germany</cop><pmid>39165056</pmid><doi>10.1002/smll.202405171</doi><orcidid>https://orcid.org/0000-0002-1526-7336</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1613-6810 |
ispartof | Small (Weinheim an der Bergstrasse, Germany), 2024-11, Vol.20 (47), p.e2405171 |
issn | 1613-6810 1613-6829 |
language | eng |
recordid | cdi_crossref_primary_10_1002_smll_202405171 |
source | Access via Wiley Online Library |
title | Deciphering the Degradation Mechanisms and Realize High-Voltage Stability of A 3 V 2 (PO 4 ) 3 (A = Li + , Na + ) in Aqueous Dual-Ion Batteries |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T01%3A01%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deciphering%20the%20Degradation%20Mechanisms%20and%20Realize%20High-Voltage%20Stability%20of%20A%203%20V%202%20(PO%204%20)%203%20(A%C2%A0=%C2%A0Li%20+%20,%20Na%20+%20)%20in%20Aqueous%20Dual-Ion%20Batteries&rft.jtitle=Small%20(Weinheim%20an%20der%20Bergstrasse,%20Germany)&rft.au=Dong,%20Chongrui&rft.date=2024-11&rft.volume=20&rft.issue=47&rft.spage=e2405171&rft.pages=e2405171-&rft.issn=1613-6810&rft.eissn=1613-6829&rft_id=info:doi/10.1002/smll.202405171&rft_dat=%3Cpubmed_cross%3E39165056%3C/pubmed_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/39165056&rfr_iscdi=true |