Deciphering the Degradation Mechanisms and Realize High-Voltage Stability of A 3 V 2 (PO 4 ) 3 (A = Li + , Na + ) in Aqueous Dual-Ion Batteries

Polyanionic A V (PO ) (A = Li , Na ) with open channels have been extensively utilized as cathode materials for aqueous zinc-metal batteries (AZMBs), whereas suffering from severe capacity fading and rapid operation voltage decay during cycling. when used as In this work, it is disclosed that the ra...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Small (Weinheim an der Bergstrasse, Germany) Germany), 2024-11, Vol.20 (47), p.e2405171
Hauptverfasser: Dong, Chongrui, Chen, Yuanjing, Ding, Yan, Pu, Xiangjun, Cao, Yuliang, Ma, Zhongyun, Chen, Zhongxue
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 47
container_start_page e2405171
container_title Small (Weinheim an der Bergstrasse, Germany)
container_volume 20
creator Dong, Chongrui
Chen, Yuanjing
Ding, Yan
Pu, Xiangjun
Cao, Yuliang
Ma, Zhongyun
Chen, Zhongxue
description Polyanionic A V (PO ) (A = Li , Na ) with open channels have been extensively utilized as cathode materials for aqueous zinc-metal batteries (AZMBs), whereas suffering from severe capacity fading and rapid operation voltage decay during cycling. when used as In this work, it is disclosed that the rapid degradation is induced by an irreversible phase change from electrochemical active Li V (PO ) to nonactive monoclinic LiZnPO , as well as active Na V (PO ) to nonactive rhombic Zn (PO ) (H O) . Subsequently, a rational dual-cation (Al-Fe) doping strategy is proposed to suppress these detrimental transformations. Such dual-cation doping entails stronger P-O and V-O bonds, thus stabilizing the initial polyanionic structures. Consequently, the optimized member of Li V Al Fe (PO ) (LVAFP) exhibits desirable cycling stability (1000 cycles, 68.5% capacity retention) and notable rate capability (92.1% of the initial capacity at 10 C). Moreover, the dual-cation doping methodology is successfully extended to improve the stability of Na V (PO ) cathode in aqueous dual-ion batteries, signifying the versatility and feasibility of this strategy. The comprehensive identification of local structural evolution in these polyanions will broaden the scope of designing high-performance alkali-vanadyl-phosphates for multivalent aqueous batteries.
doi_str_mv 10.1002/smll.202405171
format Article
fullrecord <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_smll_202405171</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>39165056</sourcerecordid><originalsourceid>FETCH-LOGICAL-c626-99806fc311ad23eef512e0d8a6ef910f6815ba1b135d18dde14ec4bb33e5cbe33</originalsourceid><addsrcrecordid>eNo9kMFOwkAQhjdGI4pePZo5QrS4s9sWevBQQYUExSjh2mzbKawpLXbbA76Fb8Cz8GSWoJz-mWT-mX8-xq6Qd5BzcWeWadoRXNjcwS4esTN0UVpuT3jHhxp5g50b88m5RGF3T1lDeug63HHP2M-AIr1aUKGzOZQLggHNCxWrUucZvFC0UJk2SwMqi-GdVKq_CYZ6vrBmeVqqOcFHqUKd6nINeQI-SJiBgNbbBGxo113L327ut5uxhhu4hVdVSxt0Bv5XRXllYFCp1BrVtx5UWdYpyFywk0Slhi7_tMmmT4_T_tAaT55HfX9sRa5wLc_rcTeJJKKKhSRKHBTE455yKfGQJ_XXTqgwROnE2ItjQpsiOwylJCcKScom6-zXRkVuTEFJsCr0UhXrAHmwQxvs0AYHtLXhem9YVeGS4sP4P0v5C9SocwQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Deciphering the Degradation Mechanisms and Realize High-Voltage Stability of A 3 V 2 (PO 4 ) 3 (A = Li + , Na + ) in Aqueous Dual-Ion Batteries</title><source>Access via Wiley Online Library</source><creator>Dong, Chongrui ; Chen, Yuanjing ; Ding, Yan ; Pu, Xiangjun ; Cao, Yuliang ; Ma, Zhongyun ; Chen, Zhongxue</creator><creatorcontrib>Dong, Chongrui ; Chen, Yuanjing ; Ding, Yan ; Pu, Xiangjun ; Cao, Yuliang ; Ma, Zhongyun ; Chen, Zhongxue</creatorcontrib><description>Polyanionic A V (PO ) (A = Li , Na ) with open channels have been extensively utilized as cathode materials for aqueous zinc-metal batteries (AZMBs), whereas suffering from severe capacity fading and rapid operation voltage decay during cycling. when used as In this work, it is disclosed that the rapid degradation is induced by an irreversible phase change from electrochemical active Li V (PO ) to nonactive monoclinic LiZnPO , as well as active Na V (PO ) to nonactive rhombic Zn (PO ) (H O) . Subsequently, a rational dual-cation (Al-Fe) doping strategy is proposed to suppress these detrimental transformations. Such dual-cation doping entails stronger P-O and V-O bonds, thus stabilizing the initial polyanionic structures. Consequently, the optimized member of Li V Al Fe (PO ) (LVAFP) exhibits desirable cycling stability (1000 cycles, 68.5% capacity retention) and notable rate capability (92.1% of the initial capacity at 10 C). Moreover, the dual-cation doping methodology is successfully extended to improve the stability of Na V (PO ) cathode in aqueous dual-ion batteries, signifying the versatility and feasibility of this strategy. The comprehensive identification of local structural evolution in these polyanions will broaden the scope of designing high-performance alkali-vanadyl-phosphates for multivalent aqueous batteries.</description><identifier>ISSN: 1613-6810</identifier><identifier>EISSN: 1613-6829</identifier><identifier>DOI: 10.1002/smll.202405171</identifier><identifier>PMID: 39165056</identifier><language>eng</language><publisher>Germany</publisher><ispartof>Small (Weinheim an der Bergstrasse, Germany), 2024-11, Vol.20 (47), p.e2405171</ispartof><rights>2024 Wiley‐VCH GmbH.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c626-99806fc311ad23eef512e0d8a6ef910f6815ba1b135d18dde14ec4bb33e5cbe33</cites><orcidid>0000-0002-1526-7336</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,27926,27927</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39165056$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dong, Chongrui</creatorcontrib><creatorcontrib>Chen, Yuanjing</creatorcontrib><creatorcontrib>Ding, Yan</creatorcontrib><creatorcontrib>Pu, Xiangjun</creatorcontrib><creatorcontrib>Cao, Yuliang</creatorcontrib><creatorcontrib>Ma, Zhongyun</creatorcontrib><creatorcontrib>Chen, Zhongxue</creatorcontrib><title>Deciphering the Degradation Mechanisms and Realize High-Voltage Stability of A 3 V 2 (PO 4 ) 3 (A = Li + , Na + ) in Aqueous Dual-Ion Batteries</title><title>Small (Weinheim an der Bergstrasse, Germany)</title><addtitle>Small</addtitle><description>Polyanionic A V (PO ) (A = Li , Na ) with open channels have been extensively utilized as cathode materials for aqueous zinc-metal batteries (AZMBs), whereas suffering from severe capacity fading and rapid operation voltage decay during cycling. when used as In this work, it is disclosed that the rapid degradation is induced by an irreversible phase change from electrochemical active Li V (PO ) to nonactive monoclinic LiZnPO , as well as active Na V (PO ) to nonactive rhombic Zn (PO ) (H O) . Subsequently, a rational dual-cation (Al-Fe) doping strategy is proposed to suppress these detrimental transformations. Such dual-cation doping entails stronger P-O and V-O bonds, thus stabilizing the initial polyanionic structures. Consequently, the optimized member of Li V Al Fe (PO ) (LVAFP) exhibits desirable cycling stability (1000 cycles, 68.5% capacity retention) and notable rate capability (92.1% of the initial capacity at 10 C). Moreover, the dual-cation doping methodology is successfully extended to improve the stability of Na V (PO ) cathode in aqueous dual-ion batteries, signifying the versatility and feasibility of this strategy. The comprehensive identification of local structural evolution in these polyanions will broaden the scope of designing high-performance alkali-vanadyl-phosphates for multivalent aqueous batteries.</description><issn>1613-6810</issn><issn>1613-6829</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNo9kMFOwkAQhjdGI4pePZo5QrS4s9sWevBQQYUExSjh2mzbKawpLXbbA76Fb8Cz8GSWoJz-mWT-mX8-xq6Qd5BzcWeWadoRXNjcwS4esTN0UVpuT3jHhxp5g50b88m5RGF3T1lDeug63HHP2M-AIr1aUKGzOZQLggHNCxWrUucZvFC0UJk2SwMqi-GdVKq_CYZ6vrBmeVqqOcFHqUKd6nINeQI-SJiBgNbbBGxo113L327ut5uxhhu4hVdVSxt0Bv5XRXllYFCp1BrVtx5UWdYpyFywk0Slhi7_tMmmT4_T_tAaT55HfX9sRa5wLc_rcTeJJKKKhSRKHBTE455yKfGQJ_XXTqgwROnE2ItjQpsiOwylJCcKScom6-zXRkVuTEFJsCr0UhXrAHmwQxvs0AYHtLXhem9YVeGS4sP4P0v5C9SocwQ</recordid><startdate>202411</startdate><enddate>202411</enddate><creator>Dong, Chongrui</creator><creator>Chen, Yuanjing</creator><creator>Ding, Yan</creator><creator>Pu, Xiangjun</creator><creator>Cao, Yuliang</creator><creator>Ma, Zhongyun</creator><creator>Chen, Zhongxue</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-1526-7336</orcidid></search><sort><creationdate>202411</creationdate><title>Deciphering the Degradation Mechanisms and Realize High-Voltage Stability of A 3 V 2 (PO 4 ) 3 (A = Li + , Na + ) in Aqueous Dual-Ion Batteries</title><author>Dong, Chongrui ; Chen, Yuanjing ; Ding, Yan ; Pu, Xiangjun ; Cao, Yuliang ; Ma, Zhongyun ; Chen, Zhongxue</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c626-99806fc311ad23eef512e0d8a6ef910f6815ba1b135d18dde14ec4bb33e5cbe33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dong, Chongrui</creatorcontrib><creatorcontrib>Chen, Yuanjing</creatorcontrib><creatorcontrib>Ding, Yan</creatorcontrib><creatorcontrib>Pu, Xiangjun</creatorcontrib><creatorcontrib>Cao, Yuliang</creatorcontrib><creatorcontrib>Ma, Zhongyun</creatorcontrib><creatorcontrib>Chen, Zhongxue</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dong, Chongrui</au><au>Chen, Yuanjing</au><au>Ding, Yan</au><au>Pu, Xiangjun</au><au>Cao, Yuliang</au><au>Ma, Zhongyun</au><au>Chen, Zhongxue</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deciphering the Degradation Mechanisms and Realize High-Voltage Stability of A 3 V 2 (PO 4 ) 3 (A = Li + , Na + ) in Aqueous Dual-Ion Batteries</atitle><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle><addtitle>Small</addtitle><date>2024-11</date><risdate>2024</risdate><volume>20</volume><issue>47</issue><spage>e2405171</spage><pages>e2405171-</pages><issn>1613-6810</issn><eissn>1613-6829</eissn><abstract>Polyanionic A V (PO ) (A = Li , Na ) with open channels have been extensively utilized as cathode materials for aqueous zinc-metal batteries (AZMBs), whereas suffering from severe capacity fading and rapid operation voltage decay during cycling. when used as In this work, it is disclosed that the rapid degradation is induced by an irreversible phase change from electrochemical active Li V (PO ) to nonactive monoclinic LiZnPO , as well as active Na V (PO ) to nonactive rhombic Zn (PO ) (H O) . Subsequently, a rational dual-cation (Al-Fe) doping strategy is proposed to suppress these detrimental transformations. Such dual-cation doping entails stronger P-O and V-O bonds, thus stabilizing the initial polyanionic structures. Consequently, the optimized member of Li V Al Fe (PO ) (LVAFP) exhibits desirable cycling stability (1000 cycles, 68.5% capacity retention) and notable rate capability (92.1% of the initial capacity at 10 C). Moreover, the dual-cation doping methodology is successfully extended to improve the stability of Na V (PO ) cathode in aqueous dual-ion batteries, signifying the versatility and feasibility of this strategy. The comprehensive identification of local structural evolution in these polyanions will broaden the scope of designing high-performance alkali-vanadyl-phosphates for multivalent aqueous batteries.</abstract><cop>Germany</cop><pmid>39165056</pmid><doi>10.1002/smll.202405171</doi><orcidid>https://orcid.org/0000-0002-1526-7336</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1613-6810
ispartof Small (Weinheim an der Bergstrasse, Germany), 2024-11, Vol.20 (47), p.e2405171
issn 1613-6810
1613-6829
language eng
recordid cdi_crossref_primary_10_1002_smll_202405171
source Access via Wiley Online Library
title Deciphering the Degradation Mechanisms and Realize High-Voltage Stability of A 3 V 2 (PO 4 ) 3 (A = Li + , Na + ) in Aqueous Dual-Ion Batteries
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T01%3A01%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deciphering%20the%20Degradation%20Mechanisms%20and%20Realize%20High-Voltage%20Stability%20of%20A%203%20V%202%20(PO%204%20)%203%20(A%C2%A0=%C2%A0Li%20+%20,%20Na%20+%20)%20in%20Aqueous%20Dual-Ion%20Batteries&rft.jtitle=Small%20(Weinheim%20an%20der%20Bergstrasse,%20Germany)&rft.au=Dong,%20Chongrui&rft.date=2024-11&rft.volume=20&rft.issue=47&rft.spage=e2405171&rft.pages=e2405171-&rft.issn=1613-6810&rft.eissn=1613-6829&rft_id=info:doi/10.1002/smll.202405171&rft_dat=%3Cpubmed_cross%3E39165056%3C/pubmed_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/39165056&rfr_iscdi=true