Structural Evolution of Manganese Prussian Blue Analogue in Aqueous ZnSO 4 Electrolyte
Among different Prussian Blue Analogues (PBAs), manganese hexacyanoferrate (MnHCF), with open framework and two abundant electroactive metal sites, exhibits high potential for the grid-scale aqueous rechargeable zinc-ion batteries (ARZIBs) application. Until now, the intercalation mechanism of Zn in...
Gespeichert in:
Veröffentlicht in: | Small (Weinheim an der Bergstrasse, Germany) Germany), 2024-08, p.e2404584 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Among different Prussian Blue Analogues (PBAs), manganese hexacyanoferrate (MnHCF), with open framework and two abundant electroactive metal sites, exhibits high potential for the grid-scale aqueous rechargeable zinc-ion batteries (ARZIBs) application. Until now, the intercalation mechanism of Zn
into MnHCF has not been clearly illustrated. In this work, combining different synchrotron X-ray techniques, the structural and microscopic evolution of MnHCF in 3 m ZnSO
electrolyte is comprehensively studied, and a thorough understanding of the intercalation/release dynamic, in terms of local and long-range domain, is provided. The elemental distribution and structural information of Fe, Mn, Zn inside MnHCF electrodes is obtained from the X-ray fluorescence (XRF) elemental maps and X-ray absorption spectroscopy (XAS). The in-depth analysis of extended X-ray absorption fine structure (EXAFS) signals confirm that the rearrangement of Mn site, evidencing the cleavage of the Mn─N bond with the formation of a Mn─O bond, in an octahedral environment. The phase transformation of MnHCF takes place exclusively during the 1st cycle, and a mixture of rhombohedral and cubic zinc hexacynoferrate (ZnHCF) phases are formed during the first charge process. Thereafter, the newly formed cubic ZnHCF phase becomes the only stable one, existing in the subsequent cycles and exhibiting excellent electrochemical stability. |
---|---|
ISSN: | 1613-6810 1613-6829 |
DOI: | 10.1002/smll.202404584 |