Nanoarchitectonics toward Full Coverage of CdZnS Nanospheres by Layered Double Hydroxides for Enhanced Visible-Light-Driven H 2 Evolution

Nanoarchitectonics of semiconductors shed light on efficient photocatalytic hydrogen evolution by precisely controlling the surface microenvironment of cocatalysts. Taking cadmium zinc sulfide (CZS) nanoparticles as a target, the spontaneous modifications are conducted by interactions between surfac...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Small (Weinheim an der Bergstrasse, Germany) Germany), 2024-07, Vol.20 (28), p.e2309750
Hauptverfasser: Ming, Yang, Cheng, Zhixing, Shi, Shuo, Su, Jing, Io, Weng-Fu, Wu, Hanbai, Li, Jiashen, Fei, Bin
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 28
container_start_page e2309750
container_title Small (Weinheim an der Bergstrasse, Germany)
container_volume 20
creator Ming, Yang
Cheng, Zhixing
Shi, Shuo
Su, Jing
Io, Weng-Fu
Wu, Hanbai
Li, Jiashen
Fei, Bin
description Nanoarchitectonics of semiconductors shed light on efficient photocatalytic hydrogen evolution by precisely controlling the surface microenvironment of cocatalysts. Taking cadmium zinc sulfide (CZS) nanoparticles as a target, the spontaneous modifications are conducted by interactions between surface Cd /Zn atoms and thiol groups in thioglycolic acid. The capping ligand impacts the semiconductor surface with a negative electronic environment, contributing to the full coverage of CZS by nickel-cobalt hydroxides (NiCo-LDHs) cocatalysts. The obtained core-shell CZS@NiCo-LDHs, possessing a shell thickness of ≈20 nm, exhibits a distinguished topology (S  = 87.65m  g ), long surface carrier lifetime, and efficient charge-hole separation. Further photocatalytic hydrogen evaluation demonstrates an enhanced H evolution rate of 18.75 mmol g  h with an apparent quantum efficiency of 16.3% at 420 nm. The recorded catalytic performance of the core-shell sample is 44.6 times higher than that of pure CZS nanospheres under visible light irradiation. Further density functional theory simulations indicate that sulfur atoms play the role of charge acceptor and surface Ni/Co atoms are electron donors, as well as a built-in electric field effect can be established. Altogether, this work takes advantage of strong S affinity from surface metal atoms, revealing the interfacial engineering toward improved visible-light-driven photocatalytic hydrogen evolution (PHE) activity.
doi_str_mv 10.1002/smll.202309750
format Article
fullrecord <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_smll_202309750</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>38299490</sourcerecordid><originalsourceid>FETCH-LOGICAL-c620-65dcdaf97cb24b2e56ced50a66b6bacf45d0b69a3245ccc853943289206cf5a53</originalsourceid><addsrcrecordid>eNo9kL1OwzAUhS0EoqWwMiK_QIpjx249otBSpAgGKgaWyH9pjNy4spNCHoG3JlWh0z3Sd88ZPgBuUzRNEcL3cevcFCNMEJ9RdAbGKUtJwuaYn59yikbgKsZPhEiKs9klGJGB84yjMfh5EY0XQdW2Nar1jVURtv5LBA2XnXMw93sTxMZAX8FcfzRv8FCIu9oEE6HsYSH6IWr46DvpDFz1OvhvqwdY-QAXTS0aNeB3G-3Ak8Ju6jZ5DHZvGriCGC723nWt9c01uKiEi-bm707AerlY56ukeH16zh-KRDGMEka10qLiMyVxJrGhbFinSDAmmRSqyqhGknFBcEaVUnNKeEbwnGPEVEUFJRMwPc6q4GMMpip3wW5F6MsUlQel5UFpeVI6FO6OhV0nt0af3v8dkl81K3St</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Nanoarchitectonics toward Full Coverage of CdZnS Nanospheres by Layered Double Hydroxides for Enhanced Visible-Light-Driven H 2 Evolution</title><source>Wiley Journals</source><creator>Ming, Yang ; Cheng, Zhixing ; Shi, Shuo ; Su, Jing ; Io, Weng-Fu ; Wu, Hanbai ; Li, Jiashen ; Fei, Bin</creator><creatorcontrib>Ming, Yang ; Cheng, Zhixing ; Shi, Shuo ; Su, Jing ; Io, Weng-Fu ; Wu, Hanbai ; Li, Jiashen ; Fei, Bin</creatorcontrib><description>Nanoarchitectonics of semiconductors shed light on efficient photocatalytic hydrogen evolution by precisely controlling the surface microenvironment of cocatalysts. Taking cadmium zinc sulfide (CZS) nanoparticles as a target, the spontaneous modifications are conducted by interactions between surface Cd /Zn atoms and thiol groups in thioglycolic acid. The capping ligand impacts the semiconductor surface with a negative electronic environment, contributing to the full coverage of CZS by nickel-cobalt hydroxides (NiCo-LDHs) cocatalysts. The obtained core-shell CZS@NiCo-LDHs, possessing a shell thickness of ≈20 nm, exhibits a distinguished topology (S  = 87.65m  g ), long surface carrier lifetime, and efficient charge-hole separation. Further photocatalytic hydrogen evaluation demonstrates an enhanced H evolution rate of 18.75 mmol g  h with an apparent quantum efficiency of 16.3% at 420 nm. The recorded catalytic performance of the core-shell sample is 44.6 times higher than that of pure CZS nanospheres under visible light irradiation. Further density functional theory simulations indicate that sulfur atoms play the role of charge acceptor and surface Ni/Co atoms are electron donors, as well as a built-in electric field effect can be established. Altogether, this work takes advantage of strong S affinity from surface metal atoms, revealing the interfacial engineering toward improved visible-light-driven photocatalytic hydrogen evolution (PHE) activity.</description><identifier>ISSN: 1613-6810</identifier><identifier>EISSN: 1613-6829</identifier><identifier>DOI: 10.1002/smll.202309750</identifier><identifier>PMID: 38299490</identifier><language>eng</language><publisher>Germany</publisher><ispartof>Small (Weinheim an der Bergstrasse, Germany), 2024-07, Vol.20 (28), p.e2309750</ispartof><rights>2024 Wiley-VCH GmbH.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c620-65dcdaf97cb24b2e56ced50a66b6bacf45d0b69a3245ccc853943289206cf5a53</cites><orcidid>0000-0002-4274-1873</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38299490$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ming, Yang</creatorcontrib><creatorcontrib>Cheng, Zhixing</creatorcontrib><creatorcontrib>Shi, Shuo</creatorcontrib><creatorcontrib>Su, Jing</creatorcontrib><creatorcontrib>Io, Weng-Fu</creatorcontrib><creatorcontrib>Wu, Hanbai</creatorcontrib><creatorcontrib>Li, Jiashen</creatorcontrib><creatorcontrib>Fei, Bin</creatorcontrib><title>Nanoarchitectonics toward Full Coverage of CdZnS Nanospheres by Layered Double Hydroxides for Enhanced Visible-Light-Driven H 2 Evolution</title><title>Small (Weinheim an der Bergstrasse, Germany)</title><addtitle>Small</addtitle><description>Nanoarchitectonics of semiconductors shed light on efficient photocatalytic hydrogen evolution by precisely controlling the surface microenvironment of cocatalysts. Taking cadmium zinc sulfide (CZS) nanoparticles as a target, the spontaneous modifications are conducted by interactions between surface Cd /Zn atoms and thiol groups in thioglycolic acid. The capping ligand impacts the semiconductor surface with a negative electronic environment, contributing to the full coverage of CZS by nickel-cobalt hydroxides (NiCo-LDHs) cocatalysts. The obtained core-shell CZS@NiCo-LDHs, possessing a shell thickness of ≈20 nm, exhibits a distinguished topology (S  = 87.65m  g ), long surface carrier lifetime, and efficient charge-hole separation. Further photocatalytic hydrogen evaluation demonstrates an enhanced H evolution rate of 18.75 mmol g  h with an apparent quantum efficiency of 16.3% at 420 nm. The recorded catalytic performance of the core-shell sample is 44.6 times higher than that of pure CZS nanospheres under visible light irradiation. Further density functional theory simulations indicate that sulfur atoms play the role of charge acceptor and surface Ni/Co atoms are electron donors, as well as a built-in electric field effect can be established. Altogether, this work takes advantage of strong S affinity from surface metal atoms, revealing the interfacial engineering toward improved visible-light-driven photocatalytic hydrogen evolution (PHE) activity.</description><issn>1613-6810</issn><issn>1613-6829</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNo9kL1OwzAUhS0EoqWwMiK_QIpjx249otBSpAgGKgaWyH9pjNy4spNCHoG3JlWh0z3Sd88ZPgBuUzRNEcL3cevcFCNMEJ9RdAbGKUtJwuaYn59yikbgKsZPhEiKs9klGJGB84yjMfh5EY0XQdW2Nar1jVURtv5LBA2XnXMw93sTxMZAX8FcfzRv8FCIu9oEE6HsYSH6IWr46DvpDFz1OvhvqwdY-QAXTS0aNeB3G-3Ak8Ju6jZ5DHZvGriCGC723nWt9c01uKiEi-bm707AerlY56ukeH16zh-KRDGMEka10qLiMyVxJrGhbFinSDAmmRSqyqhGknFBcEaVUnNKeEbwnGPEVEUFJRMwPc6q4GMMpip3wW5F6MsUlQel5UFpeVI6FO6OhV0nt0af3v8dkl81K3St</recordid><startdate>202407</startdate><enddate>202407</enddate><creator>Ming, Yang</creator><creator>Cheng, Zhixing</creator><creator>Shi, Shuo</creator><creator>Su, Jing</creator><creator>Io, Weng-Fu</creator><creator>Wu, Hanbai</creator><creator>Li, Jiashen</creator><creator>Fei, Bin</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-4274-1873</orcidid></search><sort><creationdate>202407</creationdate><title>Nanoarchitectonics toward Full Coverage of CdZnS Nanospheres by Layered Double Hydroxides for Enhanced Visible-Light-Driven H 2 Evolution</title><author>Ming, Yang ; Cheng, Zhixing ; Shi, Shuo ; Su, Jing ; Io, Weng-Fu ; Wu, Hanbai ; Li, Jiashen ; Fei, Bin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c620-65dcdaf97cb24b2e56ced50a66b6bacf45d0b69a3245ccc853943289206cf5a53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ming, Yang</creatorcontrib><creatorcontrib>Cheng, Zhixing</creatorcontrib><creatorcontrib>Shi, Shuo</creatorcontrib><creatorcontrib>Su, Jing</creatorcontrib><creatorcontrib>Io, Weng-Fu</creatorcontrib><creatorcontrib>Wu, Hanbai</creatorcontrib><creatorcontrib>Li, Jiashen</creatorcontrib><creatorcontrib>Fei, Bin</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ming, Yang</au><au>Cheng, Zhixing</au><au>Shi, Shuo</au><au>Su, Jing</au><au>Io, Weng-Fu</au><au>Wu, Hanbai</au><au>Li, Jiashen</au><au>Fei, Bin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nanoarchitectonics toward Full Coverage of CdZnS Nanospheres by Layered Double Hydroxides for Enhanced Visible-Light-Driven H 2 Evolution</atitle><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle><addtitle>Small</addtitle><date>2024-07</date><risdate>2024</risdate><volume>20</volume><issue>28</issue><spage>e2309750</spage><pages>e2309750-</pages><issn>1613-6810</issn><eissn>1613-6829</eissn><abstract>Nanoarchitectonics of semiconductors shed light on efficient photocatalytic hydrogen evolution by precisely controlling the surface microenvironment of cocatalysts. Taking cadmium zinc sulfide (CZS) nanoparticles as a target, the spontaneous modifications are conducted by interactions between surface Cd /Zn atoms and thiol groups in thioglycolic acid. The capping ligand impacts the semiconductor surface with a negative electronic environment, contributing to the full coverage of CZS by nickel-cobalt hydroxides (NiCo-LDHs) cocatalysts. The obtained core-shell CZS@NiCo-LDHs, possessing a shell thickness of ≈20 nm, exhibits a distinguished topology (S  = 87.65m  g ), long surface carrier lifetime, and efficient charge-hole separation. Further photocatalytic hydrogen evaluation demonstrates an enhanced H evolution rate of 18.75 mmol g  h with an apparent quantum efficiency of 16.3% at 420 nm. The recorded catalytic performance of the core-shell sample is 44.6 times higher than that of pure CZS nanospheres under visible light irradiation. Further density functional theory simulations indicate that sulfur atoms play the role of charge acceptor and surface Ni/Co atoms are electron donors, as well as a built-in electric field effect can be established. Altogether, this work takes advantage of strong S affinity from surface metal atoms, revealing the interfacial engineering toward improved visible-light-driven photocatalytic hydrogen evolution (PHE) activity.</abstract><cop>Germany</cop><pmid>38299490</pmid><doi>10.1002/smll.202309750</doi><orcidid>https://orcid.org/0000-0002-4274-1873</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1613-6810
ispartof Small (Weinheim an der Bergstrasse, Germany), 2024-07, Vol.20 (28), p.e2309750
issn 1613-6810
1613-6829
language eng
recordid cdi_crossref_primary_10_1002_smll_202309750
source Wiley Journals
title Nanoarchitectonics toward Full Coverage of CdZnS Nanospheres by Layered Double Hydroxides for Enhanced Visible-Light-Driven H 2 Evolution
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T03%3A53%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nanoarchitectonics%20toward%20Full%20Coverage%20of%20CdZnS%20Nanospheres%20by%20Layered%20Double%20Hydroxides%20for%20Enhanced%20Visible-Light-Driven%20H%202%20Evolution&rft.jtitle=Small%20(Weinheim%20an%20der%20Bergstrasse,%20Germany)&rft.au=Ming,%20Yang&rft.date=2024-07&rft.volume=20&rft.issue=28&rft.spage=e2309750&rft.pages=e2309750-&rft.issn=1613-6810&rft.eissn=1613-6829&rft_id=info:doi/10.1002/smll.202309750&rft_dat=%3Cpubmed_cross%3E38299490%3C/pubmed_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/38299490&rfr_iscdi=true