Pulsed Electrolysis Promotes CO 2 Reduction to Ethanol on Heterostructured Cu 2 O/Ag Catalysts
The electrochemical conversion of carbon dioxide (CO ) into ethanol with high added value has attracted increasing attention. Here, an efficient catalyst with abundant Cu O/Ag interfaces for ethanol production under pulsed CO electrolysis is reported, which is composed of Cu O hollow nanospheres loa...
Gespeichert in:
Veröffentlicht in: | Small (Weinheim an der Bergstrasse, Germany) Germany), 2024-03, Vol.20 (12), p.e2307637 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 12 |
container_start_page | e2307637 |
container_title | Small (Weinheim an der Bergstrasse, Germany) |
container_volume | 20 |
creator | Wu, Xiuju Li, Xiaotong Lv, Jiabao Lv, Xiangzhou Wu, Angjian Qi, Zhifu Wu, Hao Bin |
description | The electrochemical conversion of carbon dioxide (CO
) into ethanol with high added value has attracted increasing attention. Here, an efficient catalyst with abundant Cu
O/Ag interfaces for ethanol production under pulsed CO
electrolysis is reported, which is composed of Cu
O hollow nanospheres loaded with Ag nanoparticles (named as se-Cu
O/Ag). The CO
-to-ethanol Faradaic efficiency is prominently improved to 46.3% at a partial current density up to 417 mA cm
under pulsed electrolysis conditions in a neutral flow cell, notably outperforming conventional Cu catalysts during static electrolysis. In situ spectroscopy reveals the stabilized Cu
species of se-Cu
O/Ag during pulsed electrolysis and the enhanced adsorbed CO intermediate (
CO)coverage on the heterostructured catalyst. Density functional theory (DFT) calculations further confirm that the Cu
O/Ag heterostructure stabilizes the
CO intermediate and promotes the coupling of
CO and adsorbed CH intermediate (
CH). Meanwhile, the stable Cu
species under pulsed electrolysis favor the hydrogenation of adsorbed HCCOH intermediate (
HCCOH) to adsorbed HCCHOH intermediate (
HCCHOH) on the pathway to ethanol. The synergistic effect between the enhanced generation of
CO on Cu
O/Ag and regenerated Cu
species under pulsed electrolysis steers the reaction pathway toward ethanol. This work provides some insights into selective ethanol production from CO
electroreduction via combined catalyst design and non-steady state electrolysis. |
doi_str_mv | 10.1002/smll.202307637 |
format | Article |
fullrecord | <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_smll_202307637</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>37946399</sourcerecordid><originalsourceid>FETCH-LOGICAL-c629-db15b7a6624bdc6fd5c15b905180526ecd7e2bf820a3add79fc3e7967707ecf73</originalsourceid><addsrcrecordid>eNo9kF1PwjAUhhujEURvvTT9AxunLWvpJVmmmJBADNcuXdvpzEZJ213w7y1BuTpf73nPyYPQM4GcANB5GPo-p0AZCM7EDZoSTljGl1TeXnMCE_QQwg8AI3Qh7tGECbngTMop-tyNfbAGV73V0bv-FLqAd94NLtqAyy2m-MOaUcfOHXB0uIrf6uB6nKq1jda7EH2ajj55lGNSb-erL1yqqJJVDI_orlXpwNNfnKH9a7Uv19lm-_ZerjaZ5lRmpiFFIxTndNEYzVtT6NSQUJAlFJRbbYSlTbukoJgyRshWMyskFwKE1a1gM5RfbHV6KHjb1kffDcqfagL1mVN95lRfOaWFl8vCcWwGa67yfzDsF6iEZIA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Pulsed Electrolysis Promotes CO 2 Reduction to Ethanol on Heterostructured Cu 2 O/Ag Catalysts</title><source>Access via Wiley Online Library</source><creator>Wu, Xiuju ; Li, Xiaotong ; Lv, Jiabao ; Lv, Xiangzhou ; Wu, Angjian ; Qi, Zhifu ; Wu, Hao Bin</creator><creatorcontrib>Wu, Xiuju ; Li, Xiaotong ; Lv, Jiabao ; Lv, Xiangzhou ; Wu, Angjian ; Qi, Zhifu ; Wu, Hao Bin</creatorcontrib><description>The electrochemical conversion of carbon dioxide (CO
) into ethanol with high added value has attracted increasing attention. Here, an efficient catalyst with abundant Cu
O/Ag interfaces for ethanol production under pulsed CO
electrolysis is reported, which is composed of Cu
O hollow nanospheres loaded with Ag nanoparticles (named as se-Cu
O/Ag). The CO
-to-ethanol Faradaic efficiency is prominently improved to 46.3% at a partial current density up to 417 mA cm
under pulsed electrolysis conditions in a neutral flow cell, notably outperforming conventional Cu catalysts during static electrolysis. In situ spectroscopy reveals the stabilized Cu
species of se-Cu
O/Ag during pulsed electrolysis and the enhanced adsorbed CO intermediate (
CO)coverage on the heterostructured catalyst. Density functional theory (DFT) calculations further confirm that the Cu
O/Ag heterostructure stabilizes the
CO intermediate and promotes the coupling of
CO and adsorbed CH intermediate (
CH). Meanwhile, the stable Cu
species under pulsed electrolysis favor the hydrogenation of adsorbed HCCOH intermediate (
HCCOH) to adsorbed HCCHOH intermediate (
HCCHOH) on the pathway to ethanol. The synergistic effect between the enhanced generation of
CO on Cu
O/Ag and regenerated Cu
species under pulsed electrolysis steers the reaction pathway toward ethanol. This work provides some insights into selective ethanol production from CO
electroreduction via combined catalyst design and non-steady state electrolysis.</description><identifier>ISSN: 1613-6810</identifier><identifier>EISSN: 1613-6829</identifier><identifier>DOI: 10.1002/smll.202307637</identifier><identifier>PMID: 37946399</identifier><language>eng</language><publisher>Germany</publisher><ispartof>Small (Weinheim an der Bergstrasse, Germany), 2024-03, Vol.20 (12), p.e2307637</ispartof><rights>2023 Wiley‐VCH GmbH.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c629-db15b7a6624bdc6fd5c15b905180526ecd7e2bf820a3add79fc3e7967707ecf73</cites><orcidid>0000-0002-0725-6442</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,27929,27930</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37946399$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wu, Xiuju</creatorcontrib><creatorcontrib>Li, Xiaotong</creatorcontrib><creatorcontrib>Lv, Jiabao</creatorcontrib><creatorcontrib>Lv, Xiangzhou</creatorcontrib><creatorcontrib>Wu, Angjian</creatorcontrib><creatorcontrib>Qi, Zhifu</creatorcontrib><creatorcontrib>Wu, Hao Bin</creatorcontrib><title>Pulsed Electrolysis Promotes CO 2 Reduction to Ethanol on Heterostructured Cu 2 O/Ag Catalysts</title><title>Small (Weinheim an der Bergstrasse, Germany)</title><addtitle>Small</addtitle><description>The electrochemical conversion of carbon dioxide (CO
) into ethanol with high added value has attracted increasing attention. Here, an efficient catalyst with abundant Cu
O/Ag interfaces for ethanol production under pulsed CO
electrolysis is reported, which is composed of Cu
O hollow nanospheres loaded with Ag nanoparticles (named as se-Cu
O/Ag). The CO
-to-ethanol Faradaic efficiency is prominently improved to 46.3% at a partial current density up to 417 mA cm
under pulsed electrolysis conditions in a neutral flow cell, notably outperforming conventional Cu catalysts during static electrolysis. In situ spectroscopy reveals the stabilized Cu
species of se-Cu
O/Ag during pulsed electrolysis and the enhanced adsorbed CO intermediate (
CO)coverage on the heterostructured catalyst. Density functional theory (DFT) calculations further confirm that the Cu
O/Ag heterostructure stabilizes the
CO intermediate and promotes the coupling of
CO and adsorbed CH intermediate (
CH). Meanwhile, the stable Cu
species under pulsed electrolysis favor the hydrogenation of adsorbed HCCOH intermediate (
HCCOH) to adsorbed HCCHOH intermediate (
HCCHOH) on the pathway to ethanol. The synergistic effect between the enhanced generation of
CO on Cu
O/Ag and regenerated Cu
species under pulsed electrolysis steers the reaction pathway toward ethanol. This work provides some insights into selective ethanol production from CO
electroreduction via combined catalyst design and non-steady state electrolysis.</description><issn>1613-6810</issn><issn>1613-6829</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNo9kF1PwjAUhhujEURvvTT9AxunLWvpJVmmmJBADNcuXdvpzEZJ213w7y1BuTpf73nPyYPQM4GcANB5GPo-p0AZCM7EDZoSTljGl1TeXnMCE_QQwg8AI3Qh7tGECbngTMop-tyNfbAGV73V0bv-FLqAd94NLtqAyy2m-MOaUcfOHXB0uIrf6uB6nKq1jda7EH2ajj55lGNSb-erL1yqqJJVDI_orlXpwNNfnKH9a7Uv19lm-_ZerjaZ5lRmpiFFIxTndNEYzVtT6NSQUJAlFJRbbYSlTbukoJgyRshWMyskFwKE1a1gM5RfbHV6KHjb1kffDcqfagL1mVN95lRfOaWFl8vCcWwGa67yfzDsF6iEZIA</recordid><startdate>202403</startdate><enddate>202403</enddate><creator>Wu, Xiuju</creator><creator>Li, Xiaotong</creator><creator>Lv, Jiabao</creator><creator>Lv, Xiangzhou</creator><creator>Wu, Angjian</creator><creator>Qi, Zhifu</creator><creator>Wu, Hao Bin</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-0725-6442</orcidid></search><sort><creationdate>202403</creationdate><title>Pulsed Electrolysis Promotes CO 2 Reduction to Ethanol on Heterostructured Cu 2 O/Ag Catalysts</title><author>Wu, Xiuju ; Li, Xiaotong ; Lv, Jiabao ; Lv, Xiangzhou ; Wu, Angjian ; Qi, Zhifu ; Wu, Hao Bin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c629-db15b7a6624bdc6fd5c15b905180526ecd7e2bf820a3add79fc3e7967707ecf73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Xiuju</creatorcontrib><creatorcontrib>Li, Xiaotong</creatorcontrib><creatorcontrib>Lv, Jiabao</creatorcontrib><creatorcontrib>Lv, Xiangzhou</creatorcontrib><creatorcontrib>Wu, Angjian</creatorcontrib><creatorcontrib>Qi, Zhifu</creatorcontrib><creatorcontrib>Wu, Hao Bin</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Xiuju</au><au>Li, Xiaotong</au><au>Lv, Jiabao</au><au>Lv, Xiangzhou</au><au>Wu, Angjian</au><au>Qi, Zhifu</au><au>Wu, Hao Bin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pulsed Electrolysis Promotes CO 2 Reduction to Ethanol on Heterostructured Cu 2 O/Ag Catalysts</atitle><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle><addtitle>Small</addtitle><date>2024-03</date><risdate>2024</risdate><volume>20</volume><issue>12</issue><spage>e2307637</spage><pages>e2307637-</pages><issn>1613-6810</issn><eissn>1613-6829</eissn><abstract>The electrochemical conversion of carbon dioxide (CO
) into ethanol with high added value has attracted increasing attention. Here, an efficient catalyst with abundant Cu
O/Ag interfaces for ethanol production under pulsed CO
electrolysis is reported, which is composed of Cu
O hollow nanospheres loaded with Ag nanoparticles (named as se-Cu
O/Ag). The CO
-to-ethanol Faradaic efficiency is prominently improved to 46.3% at a partial current density up to 417 mA cm
under pulsed electrolysis conditions in a neutral flow cell, notably outperforming conventional Cu catalysts during static electrolysis. In situ spectroscopy reveals the stabilized Cu
species of se-Cu
O/Ag during pulsed electrolysis and the enhanced adsorbed CO intermediate (
CO)coverage on the heterostructured catalyst. Density functional theory (DFT) calculations further confirm that the Cu
O/Ag heterostructure stabilizes the
CO intermediate and promotes the coupling of
CO and adsorbed CH intermediate (
CH). Meanwhile, the stable Cu
species under pulsed electrolysis favor the hydrogenation of adsorbed HCCOH intermediate (
HCCOH) to adsorbed HCCHOH intermediate (
HCCHOH) on the pathway to ethanol. The synergistic effect between the enhanced generation of
CO on Cu
O/Ag and regenerated Cu
species under pulsed electrolysis steers the reaction pathway toward ethanol. This work provides some insights into selective ethanol production from CO
electroreduction via combined catalyst design and non-steady state electrolysis.</abstract><cop>Germany</cop><pmid>37946399</pmid><doi>10.1002/smll.202307637</doi><orcidid>https://orcid.org/0000-0002-0725-6442</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1613-6810 |
ispartof | Small (Weinheim an der Bergstrasse, Germany), 2024-03, Vol.20 (12), p.e2307637 |
issn | 1613-6810 1613-6829 |
language | eng |
recordid | cdi_crossref_primary_10_1002_smll_202307637 |
source | Access via Wiley Online Library |
title | Pulsed Electrolysis Promotes CO 2 Reduction to Ethanol on Heterostructured Cu 2 O/Ag Catalysts |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-11T23%3A36%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pulsed%20Electrolysis%20Promotes%20CO%202%20Reduction%20to%20Ethanol%20on%20Heterostructured%20Cu%202%20O/Ag%20Catalysts&rft.jtitle=Small%20(Weinheim%20an%20der%20Bergstrasse,%20Germany)&rft.au=Wu,%20Xiuju&rft.date=2024-03&rft.volume=20&rft.issue=12&rft.spage=e2307637&rft.pages=e2307637-&rft.issn=1613-6810&rft.eissn=1613-6829&rft_id=info:doi/10.1002/smll.202307637&rft_dat=%3Cpubmed_cross%3E37946399%3C/pubmed_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/37946399&rfr_iscdi=true |