Manipulating Molecular Structure to Trigger Ultrafast and Long-Life Potassium Storage of Fe 0.4 Ni 0.6 S Solid Solution
Currently, the main obstacle to the widespread utilization of metal chalcogenides (MS ) as anode for potassium-ion batteries (PIBs) is their poor rate capability and inferior cycling stability as a result of the undesirable electrical conductivity and severe pulverization of the nanostructure during...
Gespeichert in:
Veröffentlicht in: | Small (Weinheim an der Bergstrasse, Germany) Germany), 2023-09, Vol.19 (36), p.e2302435 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 36 |
container_start_page | e2302435 |
container_title | Small (Weinheim an der Bergstrasse, Germany) |
container_volume | 19 |
creator | Cao, Liang Len, Zichen Xu, Xin Chen, Zongquan Zhou, Lijun Geng, Hongbo Lu, Xihong |
description | Currently, the main obstacle to the widespread utilization of metal chalcogenides (MS
) as anode for potassium-ion batteries (PIBs) is their poor rate capability and inferior cycling stability as a result of the undesirable electrical conductivity and severe pulverization of the nanostructure during large K-ions intercalation-extraction processes. Herein, an ultrafast and long-life potassium storage of metal chalcogenide is rationally demonstrated by employing Fe
Ni
S solid-solution (FNS/C) through molecular structure engineering. Benefiting from improved electroactivity and intense interactions within the unique solid solution phase, the electrical conductivity and structure durability of Fe
Ni
S are vastly improved. As anticipated, the FNS/C electrode delivers superior rate properties (538.7 and 210.5 mAh g
at 0.1 and 10 A g
, respectively) and long-term cycle stability (180.8 mAh g
at 5 A g
after 2000 cycles with a capacity decay of 0.011% per cycle). Moreover, the potassium storage mechanisms of Fe
Ni
S solid solution are comprehensively revealed by several in situ characterizations and theoretical calculations. This innovative molecular structure engineering strategy opens avenues to achieve high-quality metal chalcogenides for future advanced PIBs. |
doi_str_mv | 10.1002/smll.202302435 |
format | Article |
fullrecord | <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_smll_202302435</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>37118854</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1074-1eb0a14e710452a78b0493f8d77edcd1b4f7d20b9090505a788b2df3deb022b13</originalsourceid><addsrcrecordid>eNo9kF1LwzAUhoMobk5vvZT8gdaTjy7tpQynQqfCtuuSNkmJtM1IUsR_b8d0N-c9B97nXDwI3RNICQB9DH3XpRQoA8pZdoHmZElYssxpcXneCczQTQhfAIxQLq7RjAlC8jzjc_S9kYM9jJ2MdmjxxnW6mQ6Pt9GPTRy9xtHhnbdtqz3ed9FLI0PEclC4dEOblNZo_OmiDMGO_YQ5L1uNncFrjSHl-N1OscRbvHWdVcc5RuuGW3RlZBf03V8u0H79vFu9JuXHy9vqqUwaAoInRNcgCdeCAM-oFHkNvGAmV0Jo1ShScyMUhbqAAjLIpkJeU2WYmjhKa8IWKD39bbwLwWtTHbztpf-pCFRHg9XRYHU2OAEPJ-Aw1r1W5_q_MvYLxC5r-g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Manipulating Molecular Structure to Trigger Ultrafast and Long-Life Potassium Storage of Fe 0.4 Ni 0.6 S Solid Solution</title><source>Wiley Online Library All Journals</source><creator>Cao, Liang ; Len, Zichen ; Xu, Xin ; Chen, Zongquan ; Zhou, Lijun ; Geng, Hongbo ; Lu, Xihong</creator><creatorcontrib>Cao, Liang ; Len, Zichen ; Xu, Xin ; Chen, Zongquan ; Zhou, Lijun ; Geng, Hongbo ; Lu, Xihong</creatorcontrib><description>Currently, the main obstacle to the widespread utilization of metal chalcogenides (MS
) as anode for potassium-ion batteries (PIBs) is their poor rate capability and inferior cycling stability as a result of the undesirable electrical conductivity and severe pulverization of the nanostructure during large K-ions intercalation-extraction processes. Herein, an ultrafast and long-life potassium storage of metal chalcogenide is rationally demonstrated by employing Fe
Ni
S solid-solution (FNS/C) through molecular structure engineering. Benefiting from improved electroactivity and intense interactions within the unique solid solution phase, the electrical conductivity and structure durability of Fe
Ni
S are vastly improved. As anticipated, the FNS/C electrode delivers superior rate properties (538.7 and 210.5 mAh g
at 0.1 and 10 A g
, respectively) and long-term cycle stability (180.8 mAh g
at 5 A g
after 2000 cycles with a capacity decay of 0.011% per cycle). Moreover, the potassium storage mechanisms of Fe
Ni
S solid solution are comprehensively revealed by several in situ characterizations and theoretical calculations. This innovative molecular structure engineering strategy opens avenues to achieve high-quality metal chalcogenides for future advanced PIBs.</description><identifier>ISSN: 1613-6810</identifier><identifier>EISSN: 1613-6829</identifier><identifier>DOI: 10.1002/smll.202302435</identifier><identifier>PMID: 37118854</identifier><language>eng</language><publisher>Germany</publisher><ispartof>Small (Weinheim an der Bergstrasse, Germany), 2023-09, Vol.19 (36), p.e2302435</ispartof><rights>2023 Wiley-VCH GmbH.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1074-1eb0a14e710452a78b0493f8d77edcd1b4f7d20b9090505a788b2df3deb022b13</citedby><cites>FETCH-LOGICAL-c1074-1eb0a14e710452a78b0493f8d77edcd1b4f7d20b9090505a788b2df3deb022b13</cites><orcidid>0000-0002-6764-0024</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37118854$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cao, Liang</creatorcontrib><creatorcontrib>Len, Zichen</creatorcontrib><creatorcontrib>Xu, Xin</creatorcontrib><creatorcontrib>Chen, Zongquan</creatorcontrib><creatorcontrib>Zhou, Lijun</creatorcontrib><creatorcontrib>Geng, Hongbo</creatorcontrib><creatorcontrib>Lu, Xihong</creatorcontrib><title>Manipulating Molecular Structure to Trigger Ultrafast and Long-Life Potassium Storage of Fe 0.4 Ni 0.6 S Solid Solution</title><title>Small (Weinheim an der Bergstrasse, Germany)</title><addtitle>Small</addtitle><description>Currently, the main obstacle to the widespread utilization of metal chalcogenides (MS
) as anode for potassium-ion batteries (PIBs) is their poor rate capability and inferior cycling stability as a result of the undesirable electrical conductivity and severe pulverization of the nanostructure during large K-ions intercalation-extraction processes. Herein, an ultrafast and long-life potassium storage of metal chalcogenide is rationally demonstrated by employing Fe
Ni
S solid-solution (FNS/C) through molecular structure engineering. Benefiting from improved electroactivity and intense interactions within the unique solid solution phase, the electrical conductivity and structure durability of Fe
Ni
S are vastly improved. As anticipated, the FNS/C electrode delivers superior rate properties (538.7 and 210.5 mAh g
at 0.1 and 10 A g
, respectively) and long-term cycle stability (180.8 mAh g
at 5 A g
after 2000 cycles with a capacity decay of 0.011% per cycle). Moreover, the potassium storage mechanisms of Fe
Ni
S solid solution are comprehensively revealed by several in situ characterizations and theoretical calculations. This innovative molecular structure engineering strategy opens avenues to achieve high-quality metal chalcogenides for future advanced PIBs.</description><issn>1613-6810</issn><issn>1613-6829</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNo9kF1LwzAUhoMobk5vvZT8gdaTjy7tpQynQqfCtuuSNkmJtM1IUsR_b8d0N-c9B97nXDwI3RNICQB9DH3XpRQoA8pZdoHmZElYssxpcXneCczQTQhfAIxQLq7RjAlC8jzjc_S9kYM9jJ2MdmjxxnW6mQ6Pt9GPTRy9xtHhnbdtqz3ed9FLI0PEclC4dEOblNZo_OmiDMGO_YQ5L1uNncFrjSHl-N1OscRbvHWdVcc5RuuGW3RlZBf03V8u0H79vFu9JuXHy9vqqUwaAoInRNcgCdeCAM-oFHkNvGAmV0Jo1ShScyMUhbqAAjLIpkJeU2WYmjhKa8IWKD39bbwLwWtTHbztpf-pCFRHg9XRYHU2OAEPJ-Aw1r1W5_q_MvYLxC5r-g</recordid><startdate>202309</startdate><enddate>202309</enddate><creator>Cao, Liang</creator><creator>Len, Zichen</creator><creator>Xu, Xin</creator><creator>Chen, Zongquan</creator><creator>Zhou, Lijun</creator><creator>Geng, Hongbo</creator><creator>Lu, Xihong</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-6764-0024</orcidid></search><sort><creationdate>202309</creationdate><title>Manipulating Molecular Structure to Trigger Ultrafast and Long-Life Potassium Storage of Fe 0.4 Ni 0.6 S Solid Solution</title><author>Cao, Liang ; Len, Zichen ; Xu, Xin ; Chen, Zongquan ; Zhou, Lijun ; Geng, Hongbo ; Lu, Xihong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1074-1eb0a14e710452a78b0493f8d77edcd1b4f7d20b9090505a788b2df3deb022b13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cao, Liang</creatorcontrib><creatorcontrib>Len, Zichen</creatorcontrib><creatorcontrib>Xu, Xin</creatorcontrib><creatorcontrib>Chen, Zongquan</creatorcontrib><creatorcontrib>Zhou, Lijun</creatorcontrib><creatorcontrib>Geng, Hongbo</creatorcontrib><creatorcontrib>Lu, Xihong</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cao, Liang</au><au>Len, Zichen</au><au>Xu, Xin</au><au>Chen, Zongquan</au><au>Zhou, Lijun</au><au>Geng, Hongbo</au><au>Lu, Xihong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Manipulating Molecular Structure to Trigger Ultrafast and Long-Life Potassium Storage of Fe 0.4 Ni 0.6 S Solid Solution</atitle><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle><addtitle>Small</addtitle><date>2023-09</date><risdate>2023</risdate><volume>19</volume><issue>36</issue><spage>e2302435</spage><pages>e2302435-</pages><issn>1613-6810</issn><eissn>1613-6829</eissn><abstract>Currently, the main obstacle to the widespread utilization of metal chalcogenides (MS
) as anode for potassium-ion batteries (PIBs) is their poor rate capability and inferior cycling stability as a result of the undesirable electrical conductivity and severe pulverization of the nanostructure during large K-ions intercalation-extraction processes. Herein, an ultrafast and long-life potassium storage of metal chalcogenide is rationally demonstrated by employing Fe
Ni
S solid-solution (FNS/C) through molecular structure engineering. Benefiting from improved electroactivity and intense interactions within the unique solid solution phase, the electrical conductivity and structure durability of Fe
Ni
S are vastly improved. As anticipated, the FNS/C electrode delivers superior rate properties (538.7 and 210.5 mAh g
at 0.1 and 10 A g
, respectively) and long-term cycle stability (180.8 mAh g
at 5 A g
after 2000 cycles with a capacity decay of 0.011% per cycle). Moreover, the potassium storage mechanisms of Fe
Ni
S solid solution are comprehensively revealed by several in situ characterizations and theoretical calculations. This innovative molecular structure engineering strategy opens avenues to achieve high-quality metal chalcogenides for future advanced PIBs.</abstract><cop>Germany</cop><pmid>37118854</pmid><doi>10.1002/smll.202302435</doi><orcidid>https://orcid.org/0000-0002-6764-0024</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1613-6810 |
ispartof | Small (Weinheim an der Bergstrasse, Germany), 2023-09, Vol.19 (36), p.e2302435 |
issn | 1613-6810 1613-6829 |
language | eng |
recordid | cdi_crossref_primary_10_1002_smll_202302435 |
source | Wiley Online Library All Journals |
title | Manipulating Molecular Structure to Trigger Ultrafast and Long-Life Potassium Storage of Fe 0.4 Ni 0.6 S Solid Solution |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T04%3A15%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Manipulating%20Molecular%20Structure%20to%20Trigger%20Ultrafast%20and%20Long-Life%20Potassium%20Storage%20of%20Fe%200.4%20Ni%200.6%20S%20Solid%20Solution&rft.jtitle=Small%20(Weinheim%20an%20der%20Bergstrasse,%20Germany)&rft.au=Cao,%20Liang&rft.date=2023-09&rft.volume=19&rft.issue=36&rft.spage=e2302435&rft.pages=e2302435-&rft.issn=1613-6810&rft.eissn=1613-6829&rft_id=info:doi/10.1002/smll.202302435&rft_dat=%3Cpubmed_cross%3E37118854%3C/pubmed_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/37118854&rfr_iscdi=true |