An Inorganic-Rich SEI Layer by the Catalyzed Reduction of LiNO 3 Enabled by Surface-Abundant Hydrogen Bonding for Stable Lithium Metal Batteries

Lithium (Li) metal anodes (LMAs) are promising anode candidates for realizing high-energy-density batteries. However, the formation of unstable solid electrolyte interphase (SEI) layers on Li metal is harmful for stable Li cycling; hence, enhancing the physical/chemical properties of SEI layers is i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Small (Weinheim an der Bergstrasse, Germany) Germany), 2023-06, Vol.19 (26), p.e2207222
Hauptverfasser: Kim, Subin, Cho, Ki-Yeop, Kwon, JunHwa, Sim, Kiyeon, Seok, Dain, Tak, Hyunjong, Jo, Jinhyeon, Eom, KwangSup
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 26
container_start_page e2207222
container_title Small (Weinheim an der Bergstrasse, Germany)
container_volume 19
creator Kim, Subin
Cho, Ki-Yeop
Kwon, JunHwa
Sim, Kiyeon
Seok, Dain
Tak, Hyunjong
Jo, Jinhyeon
Eom, KwangSup
description Lithium (Li) metal anodes (LMAs) are promising anode candidates for realizing high-energy-density batteries. However, the formation of unstable solid electrolyte interphase (SEI) layers on Li metal is harmful for stable Li cycling; hence, enhancing the physical/chemical properties of SEI layers is important for stabilizing LMAs. Herein, thiourea (TU, CH N S) is introduced as a new catalyzing agent for LiNO reduction to form robust inorganic-rich SEI layers containing abundant Li N. Due to the unique molecular structure of TU, the TU molecules adsorb on the Cu electrode by forming CuS bond and simultaneously form hydrogen bonding with other hydrogen bonds accepting species such as NO and TFSI through its NH bonds, leading to their catalyzed reduction and hence the formation of inorganic-rich SEI layer with abundant Li N, LiF, and Li S/Li S . Particularly, this TU-modified SEI layer shows a lower film resistance and better uniformity compared to the electrochemically and naturally formed SEI layers, enabling planar Li growth without any other material treatments and hence improving the cyclic stability in Li/Cu half-cells and Li@Cu/LiFePO  full-cells.
doi_str_mv 10.1002/smll.202207222
format Article
fullrecord <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_smll_202207222</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>36942715</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1075-5070d02652d4b85a1c4bb1116166b04767de6a518fae1bf79eb4de877b9429fb3</originalsourceid><addsrcrecordid>eNo9kNFOwjAUhhujEURvvTTnBYZtt7XbJRAUkikJ6PXSrh3UbB3puov5FD6yIyhX5yTn__7kfAg9EjwlGNPntq6qKcWUYk4pvUJjwkgYsISm15ed4BG6a9svjENCI36LRiFLI8pJPEY_Mwtr27i9sKYItqY4wG65hkz02oHswR80LIQXVf-tFWy16gpvGgtNCZl530AISytkNdyG8K5zpSh0MJOdVcJ6WPXKNXttYd5YZeweysbBzp-AAfcH09Xwpod2mAvvtTO6vUc3paha_fA3J-jzZfmxWAXZ5nW9mGVBQTCPgxhzrDBlMVWRTGJBikhKQoaPGZM44owrzURMklJoIkueahkpnXAuh8_TUoYTND33Fq5pW6fL_OhMLVyfE5yf1OYntflF7QA8nYFjJ2utLvF_l-EvcyJ01g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>An Inorganic-Rich SEI Layer by the Catalyzed Reduction of LiNO 3 Enabled by Surface-Abundant Hydrogen Bonding for Stable Lithium Metal Batteries</title><source>Access via Wiley Online Library</source><creator>Kim, Subin ; Cho, Ki-Yeop ; Kwon, JunHwa ; Sim, Kiyeon ; Seok, Dain ; Tak, Hyunjong ; Jo, Jinhyeon ; Eom, KwangSup</creator><creatorcontrib>Kim, Subin ; Cho, Ki-Yeop ; Kwon, JunHwa ; Sim, Kiyeon ; Seok, Dain ; Tak, Hyunjong ; Jo, Jinhyeon ; Eom, KwangSup</creatorcontrib><description>Lithium (Li) metal anodes (LMAs) are promising anode candidates for realizing high-energy-density batteries. However, the formation of unstable solid electrolyte interphase (SEI) layers on Li metal is harmful for stable Li cycling; hence, enhancing the physical/chemical properties of SEI layers is important for stabilizing LMAs. Herein, thiourea (TU, CH N S) is introduced as a new catalyzing agent for LiNO reduction to form robust inorganic-rich SEI layers containing abundant Li N. Due to the unique molecular structure of TU, the TU molecules adsorb on the Cu electrode by forming CuS bond and simultaneously form hydrogen bonding with other hydrogen bonds accepting species such as NO and TFSI through its NH bonds, leading to their catalyzed reduction and hence the formation of inorganic-rich SEI layer with abundant Li N, LiF, and Li S/Li S . Particularly, this TU-modified SEI layer shows a lower film resistance and better uniformity compared to the electrochemically and naturally formed SEI layers, enabling planar Li growth without any other material treatments and hence improving the cyclic stability in Li/Cu half-cells and Li@Cu/LiFePO  full-cells.</description><identifier>ISSN: 1613-6810</identifier><identifier>EISSN: 1613-6829</identifier><identifier>DOI: 10.1002/smll.202207222</identifier><identifier>PMID: 36942715</identifier><language>eng</language><publisher>Germany</publisher><ispartof>Small (Weinheim an der Bergstrasse, Germany), 2023-06, Vol.19 (26), p.e2207222</ispartof><rights>2023 Wiley-VCH GmbH.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1075-5070d02652d4b85a1c4bb1116166b04767de6a518fae1bf79eb4de877b9429fb3</citedby><cites>FETCH-LOGICAL-c1075-5070d02652d4b85a1c4bb1116166b04767de6a518fae1bf79eb4de877b9429fb3</cites><orcidid>0000-0003-2256-271X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,27926,27927</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36942715$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kim, Subin</creatorcontrib><creatorcontrib>Cho, Ki-Yeop</creatorcontrib><creatorcontrib>Kwon, JunHwa</creatorcontrib><creatorcontrib>Sim, Kiyeon</creatorcontrib><creatorcontrib>Seok, Dain</creatorcontrib><creatorcontrib>Tak, Hyunjong</creatorcontrib><creatorcontrib>Jo, Jinhyeon</creatorcontrib><creatorcontrib>Eom, KwangSup</creatorcontrib><title>An Inorganic-Rich SEI Layer by the Catalyzed Reduction of LiNO 3 Enabled by Surface-Abundant Hydrogen Bonding for Stable Lithium Metal Batteries</title><title>Small (Weinheim an der Bergstrasse, Germany)</title><addtitle>Small</addtitle><description>Lithium (Li) metal anodes (LMAs) are promising anode candidates for realizing high-energy-density batteries. However, the formation of unstable solid electrolyte interphase (SEI) layers on Li metal is harmful for stable Li cycling; hence, enhancing the physical/chemical properties of SEI layers is important for stabilizing LMAs. Herein, thiourea (TU, CH N S) is introduced as a new catalyzing agent for LiNO reduction to form robust inorganic-rich SEI layers containing abundant Li N. Due to the unique molecular structure of TU, the TU molecules adsorb on the Cu electrode by forming CuS bond and simultaneously form hydrogen bonding with other hydrogen bonds accepting species such as NO and TFSI through its NH bonds, leading to their catalyzed reduction and hence the formation of inorganic-rich SEI layer with abundant Li N, LiF, and Li S/Li S . Particularly, this TU-modified SEI layer shows a lower film resistance and better uniformity compared to the electrochemically and naturally formed SEI layers, enabling planar Li growth without any other material treatments and hence improving the cyclic stability in Li/Cu half-cells and Li@Cu/LiFePO  full-cells.</description><issn>1613-6810</issn><issn>1613-6829</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNo9kNFOwjAUhhujEURvvTTnBYZtt7XbJRAUkikJ6PXSrh3UbB3puov5FD6yIyhX5yTn__7kfAg9EjwlGNPntq6qKcWUYk4pvUJjwkgYsISm15ed4BG6a9svjENCI36LRiFLI8pJPEY_Mwtr27i9sKYItqY4wG65hkz02oHswR80LIQXVf-tFWy16gpvGgtNCZl530AISytkNdyG8K5zpSh0MJOdVcJ6WPXKNXttYd5YZeweysbBzp-AAfcH09Xwpod2mAvvtTO6vUc3paha_fA3J-jzZfmxWAXZ5nW9mGVBQTCPgxhzrDBlMVWRTGJBikhKQoaPGZM44owrzURMklJoIkueahkpnXAuh8_TUoYTND33Fq5pW6fL_OhMLVyfE5yf1OYntflF7QA8nYFjJ2utLvF_l-EvcyJ01g</recordid><startdate>202306</startdate><enddate>202306</enddate><creator>Kim, Subin</creator><creator>Cho, Ki-Yeop</creator><creator>Kwon, JunHwa</creator><creator>Sim, Kiyeon</creator><creator>Seok, Dain</creator><creator>Tak, Hyunjong</creator><creator>Jo, Jinhyeon</creator><creator>Eom, KwangSup</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-2256-271X</orcidid></search><sort><creationdate>202306</creationdate><title>An Inorganic-Rich SEI Layer by the Catalyzed Reduction of LiNO 3 Enabled by Surface-Abundant Hydrogen Bonding for Stable Lithium Metal Batteries</title><author>Kim, Subin ; Cho, Ki-Yeop ; Kwon, JunHwa ; Sim, Kiyeon ; Seok, Dain ; Tak, Hyunjong ; Jo, Jinhyeon ; Eom, KwangSup</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1075-5070d02652d4b85a1c4bb1116166b04767de6a518fae1bf79eb4de877b9429fb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Subin</creatorcontrib><creatorcontrib>Cho, Ki-Yeop</creatorcontrib><creatorcontrib>Kwon, JunHwa</creatorcontrib><creatorcontrib>Sim, Kiyeon</creatorcontrib><creatorcontrib>Seok, Dain</creatorcontrib><creatorcontrib>Tak, Hyunjong</creatorcontrib><creatorcontrib>Jo, Jinhyeon</creatorcontrib><creatorcontrib>Eom, KwangSup</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Subin</au><au>Cho, Ki-Yeop</au><au>Kwon, JunHwa</au><au>Sim, Kiyeon</au><au>Seok, Dain</au><au>Tak, Hyunjong</au><au>Jo, Jinhyeon</au><au>Eom, KwangSup</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Inorganic-Rich SEI Layer by the Catalyzed Reduction of LiNO 3 Enabled by Surface-Abundant Hydrogen Bonding for Stable Lithium Metal Batteries</atitle><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle><addtitle>Small</addtitle><date>2023-06</date><risdate>2023</risdate><volume>19</volume><issue>26</issue><spage>e2207222</spage><pages>e2207222-</pages><issn>1613-6810</issn><eissn>1613-6829</eissn><abstract>Lithium (Li) metal anodes (LMAs) are promising anode candidates for realizing high-energy-density batteries. However, the formation of unstable solid electrolyte interphase (SEI) layers on Li metal is harmful for stable Li cycling; hence, enhancing the physical/chemical properties of SEI layers is important for stabilizing LMAs. Herein, thiourea (TU, CH N S) is introduced as a new catalyzing agent for LiNO reduction to form robust inorganic-rich SEI layers containing abundant Li N. Due to the unique molecular structure of TU, the TU molecules adsorb on the Cu electrode by forming CuS bond and simultaneously form hydrogen bonding with other hydrogen bonds accepting species such as NO and TFSI through its NH bonds, leading to their catalyzed reduction and hence the formation of inorganic-rich SEI layer with abundant Li N, LiF, and Li S/Li S . Particularly, this TU-modified SEI layer shows a lower film resistance and better uniformity compared to the electrochemically and naturally formed SEI layers, enabling planar Li growth without any other material treatments and hence improving the cyclic stability in Li/Cu half-cells and Li@Cu/LiFePO  full-cells.</abstract><cop>Germany</cop><pmid>36942715</pmid><doi>10.1002/smll.202207222</doi><orcidid>https://orcid.org/0000-0003-2256-271X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1613-6810
ispartof Small (Weinheim an der Bergstrasse, Germany), 2023-06, Vol.19 (26), p.e2207222
issn 1613-6810
1613-6829
language eng
recordid cdi_crossref_primary_10_1002_smll_202207222
source Access via Wiley Online Library
title An Inorganic-Rich SEI Layer by the Catalyzed Reduction of LiNO 3 Enabled by Surface-Abundant Hydrogen Bonding for Stable Lithium Metal Batteries
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T05%3A45%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Inorganic-Rich%20SEI%20Layer%20by%20the%20Catalyzed%20Reduction%20of%20LiNO%203%20Enabled%20by%20Surface-Abundant%20Hydrogen%20Bonding%20for%20Stable%20Lithium%20Metal%20Batteries&rft.jtitle=Small%20(Weinheim%20an%20der%20Bergstrasse,%20Germany)&rft.au=Kim,%20Subin&rft.date=2023-06&rft.volume=19&rft.issue=26&rft.spage=e2207222&rft.pages=e2207222-&rft.issn=1613-6810&rft.eissn=1613-6829&rft_id=info:doi/10.1002/smll.202207222&rft_dat=%3Cpubmed_cross%3E36942715%3C/pubmed_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/36942715&rfr_iscdi=true