An Inorganic-Rich SEI Layer by the Catalyzed Reduction of LiNO 3 Enabled by Surface-Abundant Hydrogen Bonding for Stable Lithium Metal Batteries
Lithium (Li) metal anodes (LMAs) are promising anode candidates for realizing high-energy-density batteries. However, the formation of unstable solid electrolyte interphase (SEI) layers on Li metal is harmful for stable Li cycling; hence, enhancing the physical/chemical properties of SEI layers is i...
Gespeichert in:
Veröffentlicht in: | Small (Weinheim an der Bergstrasse, Germany) Germany), 2023-06, Vol.19 (26), p.e2207222 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 26 |
container_start_page | e2207222 |
container_title | Small (Weinheim an der Bergstrasse, Germany) |
container_volume | 19 |
creator | Kim, Subin Cho, Ki-Yeop Kwon, JunHwa Sim, Kiyeon Seok, Dain Tak, Hyunjong Jo, Jinhyeon Eom, KwangSup |
description | Lithium (Li) metal anodes (LMAs) are promising anode candidates for realizing high-energy-density batteries. However, the formation of unstable solid electrolyte interphase (SEI) layers on Li metal is harmful for stable Li cycling; hence, enhancing the physical/chemical properties of SEI layers is important for stabilizing LMAs. Herein, thiourea (TU, CH
N
S) is introduced as a new catalyzing agent for LiNO
reduction to form robust inorganic-rich SEI layers containing abundant Li
N. Due to the unique molecular structure of TU, the TU molecules adsorb on the Cu electrode by forming CuS bond and simultaneously form hydrogen bonding with other hydrogen bonds accepting species such as NO
and TFSI
through its NH bonds, leading to their catalyzed reduction and hence the formation of inorganic-rich SEI layer with abundant Li
N, LiF, and Li
S/Li
S
. Particularly, this TU-modified SEI layer shows a lower film resistance and better uniformity compared to the electrochemically and naturally formed SEI layers, enabling planar Li growth without any other material treatments and hence improving the cyclic stability in Li/Cu half-cells and Li@Cu/LiFePO
full-cells. |
doi_str_mv | 10.1002/smll.202207222 |
format | Article |
fullrecord | <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_smll_202207222</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>36942715</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1075-5070d02652d4b85a1c4bb1116166b04767de6a518fae1bf79eb4de877b9429fb3</originalsourceid><addsrcrecordid>eNo9kNFOwjAUhhujEURvvTTnBYZtt7XbJRAUkikJ6PXSrh3UbB3puov5FD6yIyhX5yTn__7kfAg9EjwlGNPntq6qKcWUYk4pvUJjwkgYsISm15ed4BG6a9svjENCI36LRiFLI8pJPEY_Mwtr27i9sKYItqY4wG65hkz02oHswR80LIQXVf-tFWy16gpvGgtNCZl530AISytkNdyG8K5zpSh0MJOdVcJ6WPXKNXttYd5YZeweysbBzp-AAfcH09Xwpod2mAvvtTO6vUc3paha_fA3J-jzZfmxWAXZ5nW9mGVBQTCPgxhzrDBlMVWRTGJBikhKQoaPGZM44owrzURMklJoIkueahkpnXAuh8_TUoYTND33Fq5pW6fL_OhMLVyfE5yf1OYntflF7QA8nYFjJ2utLvF_l-EvcyJ01g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>An Inorganic-Rich SEI Layer by the Catalyzed Reduction of LiNO 3 Enabled by Surface-Abundant Hydrogen Bonding for Stable Lithium Metal Batteries</title><source>Access via Wiley Online Library</source><creator>Kim, Subin ; Cho, Ki-Yeop ; Kwon, JunHwa ; Sim, Kiyeon ; Seok, Dain ; Tak, Hyunjong ; Jo, Jinhyeon ; Eom, KwangSup</creator><creatorcontrib>Kim, Subin ; Cho, Ki-Yeop ; Kwon, JunHwa ; Sim, Kiyeon ; Seok, Dain ; Tak, Hyunjong ; Jo, Jinhyeon ; Eom, KwangSup</creatorcontrib><description>Lithium (Li) metal anodes (LMAs) are promising anode candidates for realizing high-energy-density batteries. However, the formation of unstable solid electrolyte interphase (SEI) layers on Li metal is harmful for stable Li cycling; hence, enhancing the physical/chemical properties of SEI layers is important for stabilizing LMAs. Herein, thiourea (TU, CH
N
S) is introduced as a new catalyzing agent for LiNO
reduction to form robust inorganic-rich SEI layers containing abundant Li
N. Due to the unique molecular structure of TU, the TU molecules adsorb on the Cu electrode by forming CuS bond and simultaneously form hydrogen bonding with other hydrogen bonds accepting species such as NO
and TFSI
through its NH bonds, leading to their catalyzed reduction and hence the formation of inorganic-rich SEI layer with abundant Li
N, LiF, and Li
S/Li
S
. Particularly, this TU-modified SEI layer shows a lower film resistance and better uniformity compared to the electrochemically and naturally formed SEI layers, enabling planar Li growth without any other material treatments and hence improving the cyclic stability in Li/Cu half-cells and Li@Cu/LiFePO
full-cells.</description><identifier>ISSN: 1613-6810</identifier><identifier>EISSN: 1613-6829</identifier><identifier>DOI: 10.1002/smll.202207222</identifier><identifier>PMID: 36942715</identifier><language>eng</language><publisher>Germany</publisher><ispartof>Small (Weinheim an der Bergstrasse, Germany), 2023-06, Vol.19 (26), p.e2207222</ispartof><rights>2023 Wiley-VCH GmbH.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1075-5070d02652d4b85a1c4bb1116166b04767de6a518fae1bf79eb4de877b9429fb3</citedby><cites>FETCH-LOGICAL-c1075-5070d02652d4b85a1c4bb1116166b04767de6a518fae1bf79eb4de877b9429fb3</cites><orcidid>0000-0003-2256-271X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,27926,27927</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36942715$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kim, Subin</creatorcontrib><creatorcontrib>Cho, Ki-Yeop</creatorcontrib><creatorcontrib>Kwon, JunHwa</creatorcontrib><creatorcontrib>Sim, Kiyeon</creatorcontrib><creatorcontrib>Seok, Dain</creatorcontrib><creatorcontrib>Tak, Hyunjong</creatorcontrib><creatorcontrib>Jo, Jinhyeon</creatorcontrib><creatorcontrib>Eom, KwangSup</creatorcontrib><title>An Inorganic-Rich SEI Layer by the Catalyzed Reduction of LiNO 3 Enabled by Surface-Abundant Hydrogen Bonding for Stable Lithium Metal Batteries</title><title>Small (Weinheim an der Bergstrasse, Germany)</title><addtitle>Small</addtitle><description>Lithium (Li) metal anodes (LMAs) are promising anode candidates for realizing high-energy-density batteries. However, the formation of unstable solid electrolyte interphase (SEI) layers on Li metal is harmful for stable Li cycling; hence, enhancing the physical/chemical properties of SEI layers is important for stabilizing LMAs. Herein, thiourea (TU, CH
N
S) is introduced as a new catalyzing agent for LiNO
reduction to form robust inorganic-rich SEI layers containing abundant Li
N. Due to the unique molecular structure of TU, the TU molecules adsorb on the Cu electrode by forming CuS bond and simultaneously form hydrogen bonding with other hydrogen bonds accepting species such as NO
and TFSI
through its NH bonds, leading to their catalyzed reduction and hence the formation of inorganic-rich SEI layer with abundant Li
N, LiF, and Li
S/Li
S
. Particularly, this TU-modified SEI layer shows a lower film resistance and better uniformity compared to the electrochemically and naturally formed SEI layers, enabling planar Li growth without any other material treatments and hence improving the cyclic stability in Li/Cu half-cells and Li@Cu/LiFePO
full-cells.</description><issn>1613-6810</issn><issn>1613-6829</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNo9kNFOwjAUhhujEURvvTTnBYZtt7XbJRAUkikJ6PXSrh3UbB3puov5FD6yIyhX5yTn__7kfAg9EjwlGNPntq6qKcWUYk4pvUJjwkgYsISm15ed4BG6a9svjENCI36LRiFLI8pJPEY_Mwtr27i9sKYItqY4wG65hkz02oHswR80LIQXVf-tFWy16gpvGgtNCZl530AISytkNdyG8K5zpSh0MJOdVcJ6WPXKNXttYd5YZeweysbBzp-AAfcH09Xwpod2mAvvtTO6vUc3paha_fA3J-jzZfmxWAXZ5nW9mGVBQTCPgxhzrDBlMVWRTGJBikhKQoaPGZM44owrzURMklJoIkueahkpnXAuh8_TUoYTND33Fq5pW6fL_OhMLVyfE5yf1OYntflF7QA8nYFjJ2utLvF_l-EvcyJ01g</recordid><startdate>202306</startdate><enddate>202306</enddate><creator>Kim, Subin</creator><creator>Cho, Ki-Yeop</creator><creator>Kwon, JunHwa</creator><creator>Sim, Kiyeon</creator><creator>Seok, Dain</creator><creator>Tak, Hyunjong</creator><creator>Jo, Jinhyeon</creator><creator>Eom, KwangSup</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-2256-271X</orcidid></search><sort><creationdate>202306</creationdate><title>An Inorganic-Rich SEI Layer by the Catalyzed Reduction of LiNO 3 Enabled by Surface-Abundant Hydrogen Bonding for Stable Lithium Metal Batteries</title><author>Kim, Subin ; Cho, Ki-Yeop ; Kwon, JunHwa ; Sim, Kiyeon ; Seok, Dain ; Tak, Hyunjong ; Jo, Jinhyeon ; Eom, KwangSup</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1075-5070d02652d4b85a1c4bb1116166b04767de6a518fae1bf79eb4de877b9429fb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Subin</creatorcontrib><creatorcontrib>Cho, Ki-Yeop</creatorcontrib><creatorcontrib>Kwon, JunHwa</creatorcontrib><creatorcontrib>Sim, Kiyeon</creatorcontrib><creatorcontrib>Seok, Dain</creatorcontrib><creatorcontrib>Tak, Hyunjong</creatorcontrib><creatorcontrib>Jo, Jinhyeon</creatorcontrib><creatorcontrib>Eom, KwangSup</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Subin</au><au>Cho, Ki-Yeop</au><au>Kwon, JunHwa</au><au>Sim, Kiyeon</au><au>Seok, Dain</au><au>Tak, Hyunjong</au><au>Jo, Jinhyeon</au><au>Eom, KwangSup</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Inorganic-Rich SEI Layer by the Catalyzed Reduction of LiNO 3 Enabled by Surface-Abundant Hydrogen Bonding for Stable Lithium Metal Batteries</atitle><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle><addtitle>Small</addtitle><date>2023-06</date><risdate>2023</risdate><volume>19</volume><issue>26</issue><spage>e2207222</spage><pages>e2207222-</pages><issn>1613-6810</issn><eissn>1613-6829</eissn><abstract>Lithium (Li) metal anodes (LMAs) are promising anode candidates for realizing high-energy-density batteries. However, the formation of unstable solid electrolyte interphase (SEI) layers on Li metal is harmful for stable Li cycling; hence, enhancing the physical/chemical properties of SEI layers is important for stabilizing LMAs. Herein, thiourea (TU, CH
N
S) is introduced as a new catalyzing agent for LiNO
reduction to form robust inorganic-rich SEI layers containing abundant Li
N. Due to the unique molecular structure of TU, the TU molecules adsorb on the Cu electrode by forming CuS bond and simultaneously form hydrogen bonding with other hydrogen bonds accepting species such as NO
and TFSI
through its NH bonds, leading to their catalyzed reduction and hence the formation of inorganic-rich SEI layer with abundant Li
N, LiF, and Li
S/Li
S
. Particularly, this TU-modified SEI layer shows a lower film resistance and better uniformity compared to the electrochemically and naturally formed SEI layers, enabling planar Li growth without any other material treatments and hence improving the cyclic stability in Li/Cu half-cells and Li@Cu/LiFePO
full-cells.</abstract><cop>Germany</cop><pmid>36942715</pmid><doi>10.1002/smll.202207222</doi><orcidid>https://orcid.org/0000-0003-2256-271X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1613-6810 |
ispartof | Small (Weinheim an der Bergstrasse, Germany), 2023-06, Vol.19 (26), p.e2207222 |
issn | 1613-6810 1613-6829 |
language | eng |
recordid | cdi_crossref_primary_10_1002_smll_202207222 |
source | Access via Wiley Online Library |
title | An Inorganic-Rich SEI Layer by the Catalyzed Reduction of LiNO 3 Enabled by Surface-Abundant Hydrogen Bonding for Stable Lithium Metal Batteries |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T05%3A45%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Inorganic-Rich%20SEI%20Layer%20by%20the%20Catalyzed%20Reduction%20of%20LiNO%203%20Enabled%20by%20Surface-Abundant%20Hydrogen%20Bonding%20for%20Stable%20Lithium%20Metal%20Batteries&rft.jtitle=Small%20(Weinheim%20an%20der%20Bergstrasse,%20Germany)&rft.au=Kim,%20Subin&rft.date=2023-06&rft.volume=19&rft.issue=26&rft.spage=e2207222&rft.pages=e2207222-&rft.issn=1613-6810&rft.eissn=1613-6829&rft_id=info:doi/10.1002/smll.202207222&rft_dat=%3Cpubmed_cross%3E36942715%3C/pubmed_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/36942715&rfr_iscdi=true |