Non-Layered Te/In 2 S 3 Tunneling Heterojunctions with Ultrahigh Photoresponsivity and Fast Photoresponse

A photodetector based on 2D non-layered materials can easily utilize the photogating effect to achieve considerable photogain, but at the cost of response speed. Here, a rationally designed tunneling heterojunction fabricated by vertical stacking of non-layered In S and Te flakes is studied systemat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Small (Weinheim an der Bergstrasse, Germany) Germany), 2022-05, Vol.18 (18), p.e2200445
Hauptverfasser: Cao, Xuanhao, Lei, Zehong, Huang, Baoquan, Wei, Aixiang, Tao, Lili, Yang, Yibin, Zheng, Zhaoqiang, Feng, Xing, Li, Jingbo, Zhao, Yu
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 18
container_start_page e2200445
container_title Small (Weinheim an der Bergstrasse, Germany)
container_volume 18
creator Cao, Xuanhao
Lei, Zehong
Huang, Baoquan
Wei, Aixiang
Tao, Lili
Yang, Yibin
Zheng, Zhaoqiang
Feng, Xing
Li, Jingbo
Zhao, Yu
description A photodetector based on 2D non-layered materials can easily utilize the photogating effect to achieve considerable photogain, but at the cost of response speed. Here, a rationally designed tunneling heterojunction fabricated by vertical stacking of non-layered In S and Te flakes is studied systematically. The Te/In S heterojunctions possess type-II band alignment and can transfer to type-I or type-III depending on the electric field applied, allowing for tunable tunneling of the photoinduced carriers. The Te/In S tunneling heterojunction exhibits a reverse rectification ratio exceeding 10 , an ultralow forward current of 10 A, and a current on/off ratio over 10 . A photodetector based on the heterojunctions shows an ultrahigh photoresponsivity of 146 A W in the visible range. Furthermore, the devices exhibit a response time of 5 ms, which is two and four orders of magnitude faster than that of its constituent In S and Te. The simultaneously improved photocurrent and response speed are attributed to the direct tunneling of the photoinduced carriers, as well as a combined mechanism of photoconductive and photogating effects. In addition, the photodetector exhibits a clear photovoltaic effect, which can work in a self-powered mode.
doi_str_mv 10.1002/smll.202200445
format Article
fullrecord <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_smll_202200445</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>35373465</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1075-43e552df9d67d2fa6d49947984a35470230c24a521fe7ac263398f756fcca48a3</originalsourceid><addsrcrecordid>eNpVkMtOAjEARRujEUS3Lk1_YKDvziwNESEhaiKsJ7UPpmTokLZo-HsgKImre5P7WBwAHjEaYoTIKG3adkgQIQgxxq9AHwtMC1GS6vriMeqBu5TWCFFMmLwFPcqppEzwPvBvXSjmam-jNXBhR7MACfyEFC52IdjWhxWc2mxjt94FnX0XEvzxuYHLNkfV-FUDP5oud9Gm7THz3z7voQoGTlTK_yJ7D26capN9-NUBWE5eFuNpMX9_nY2f54XGSPKCUcs5Ma4yQhrilDCsqpisSqYoZxIRijRhihPsrFSaCEqr0kkunNaKlYoOwPD8q2OXUrSu3ka_UXFfY1SfmNUnZvWF2XHwdB5sd18bay71P0j0AOZCaF4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Non-Layered Te/In 2 S 3 Tunneling Heterojunctions with Ultrahigh Photoresponsivity and Fast Photoresponse</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Cao, Xuanhao ; Lei, Zehong ; Huang, Baoquan ; Wei, Aixiang ; Tao, Lili ; Yang, Yibin ; Zheng, Zhaoqiang ; Feng, Xing ; Li, Jingbo ; Zhao, Yu</creator><creatorcontrib>Cao, Xuanhao ; Lei, Zehong ; Huang, Baoquan ; Wei, Aixiang ; Tao, Lili ; Yang, Yibin ; Zheng, Zhaoqiang ; Feng, Xing ; Li, Jingbo ; Zhao, Yu</creatorcontrib><description>A photodetector based on 2D non-layered materials can easily utilize the photogating effect to achieve considerable photogain, but at the cost of response speed. Here, a rationally designed tunneling heterojunction fabricated by vertical stacking of non-layered In S and Te flakes is studied systematically. The Te/In S heterojunctions possess type-II band alignment and can transfer to type-I or type-III depending on the electric field applied, allowing for tunable tunneling of the photoinduced carriers. The Te/In S tunneling heterojunction exhibits a reverse rectification ratio exceeding 10 , an ultralow forward current of 10 A, and a current on/off ratio over 10 . A photodetector based on the heterojunctions shows an ultrahigh photoresponsivity of 146 A W in the visible range. Furthermore, the devices exhibit a response time of 5 ms, which is two and four orders of magnitude faster than that of its constituent In S and Te. The simultaneously improved photocurrent and response speed are attributed to the direct tunneling of the photoinduced carriers, as well as a combined mechanism of photoconductive and photogating effects. In addition, the photodetector exhibits a clear photovoltaic effect, which can work in a self-powered mode.</description><identifier>ISSN: 1613-6810</identifier><identifier>EISSN: 1613-6829</identifier><identifier>DOI: 10.1002/smll.202200445</identifier><identifier>PMID: 35373465</identifier><language>eng</language><publisher>Germany</publisher><ispartof>Small (Weinheim an der Bergstrasse, Germany), 2022-05, Vol.18 (18), p.e2200445</ispartof><rights>2022 Wiley-VCH GmbH.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1075-43e552df9d67d2fa6d49947984a35470230c24a521fe7ac263398f756fcca48a3</citedby><cites>FETCH-LOGICAL-c1075-43e552df9d67d2fa6d49947984a35470230c24a521fe7ac263398f756fcca48a3</cites><orcidid>0000-0002-1001-206X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35373465$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cao, Xuanhao</creatorcontrib><creatorcontrib>Lei, Zehong</creatorcontrib><creatorcontrib>Huang, Baoquan</creatorcontrib><creatorcontrib>Wei, Aixiang</creatorcontrib><creatorcontrib>Tao, Lili</creatorcontrib><creatorcontrib>Yang, Yibin</creatorcontrib><creatorcontrib>Zheng, Zhaoqiang</creatorcontrib><creatorcontrib>Feng, Xing</creatorcontrib><creatorcontrib>Li, Jingbo</creatorcontrib><creatorcontrib>Zhao, Yu</creatorcontrib><title>Non-Layered Te/In 2 S 3 Tunneling Heterojunctions with Ultrahigh Photoresponsivity and Fast Photoresponse</title><title>Small (Weinheim an der Bergstrasse, Germany)</title><addtitle>Small</addtitle><description>A photodetector based on 2D non-layered materials can easily utilize the photogating effect to achieve considerable photogain, but at the cost of response speed. Here, a rationally designed tunneling heterojunction fabricated by vertical stacking of non-layered In S and Te flakes is studied systematically. The Te/In S heterojunctions possess type-II band alignment and can transfer to type-I or type-III depending on the electric field applied, allowing for tunable tunneling of the photoinduced carriers. The Te/In S tunneling heterojunction exhibits a reverse rectification ratio exceeding 10 , an ultralow forward current of 10 A, and a current on/off ratio over 10 . A photodetector based on the heterojunctions shows an ultrahigh photoresponsivity of 146 A W in the visible range. Furthermore, the devices exhibit a response time of 5 ms, which is two and four orders of magnitude faster than that of its constituent In S and Te. The simultaneously improved photocurrent and response speed are attributed to the direct tunneling of the photoinduced carriers, as well as a combined mechanism of photoconductive and photogating effects. In addition, the photodetector exhibits a clear photovoltaic effect, which can work in a self-powered mode.</description><issn>1613-6810</issn><issn>1613-6829</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpVkMtOAjEARRujEUS3Lk1_YKDvziwNESEhaiKsJ7UPpmTokLZo-HsgKImre5P7WBwAHjEaYoTIKG3adkgQIQgxxq9AHwtMC1GS6vriMeqBu5TWCFFMmLwFPcqppEzwPvBvXSjmam-jNXBhR7MACfyEFC52IdjWhxWc2mxjt94FnX0XEvzxuYHLNkfV-FUDP5oud9Gm7THz3z7voQoGTlTK_yJ7D26capN9-NUBWE5eFuNpMX9_nY2f54XGSPKCUcs5Ma4yQhrilDCsqpisSqYoZxIRijRhihPsrFSaCEqr0kkunNaKlYoOwPD8q2OXUrSu3ka_UXFfY1SfmNUnZvWF2XHwdB5sd18bay71P0j0AOZCaF4</recordid><startdate>202205</startdate><enddate>202205</enddate><creator>Cao, Xuanhao</creator><creator>Lei, Zehong</creator><creator>Huang, Baoquan</creator><creator>Wei, Aixiang</creator><creator>Tao, Lili</creator><creator>Yang, Yibin</creator><creator>Zheng, Zhaoqiang</creator><creator>Feng, Xing</creator><creator>Li, Jingbo</creator><creator>Zhao, Yu</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-1001-206X</orcidid></search><sort><creationdate>202205</creationdate><title>Non-Layered Te/In 2 S 3 Tunneling Heterojunctions with Ultrahigh Photoresponsivity and Fast Photoresponse</title><author>Cao, Xuanhao ; Lei, Zehong ; Huang, Baoquan ; Wei, Aixiang ; Tao, Lili ; Yang, Yibin ; Zheng, Zhaoqiang ; Feng, Xing ; Li, Jingbo ; Zhao, Yu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1075-43e552df9d67d2fa6d49947984a35470230c24a521fe7ac263398f756fcca48a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cao, Xuanhao</creatorcontrib><creatorcontrib>Lei, Zehong</creatorcontrib><creatorcontrib>Huang, Baoquan</creatorcontrib><creatorcontrib>Wei, Aixiang</creatorcontrib><creatorcontrib>Tao, Lili</creatorcontrib><creatorcontrib>Yang, Yibin</creatorcontrib><creatorcontrib>Zheng, Zhaoqiang</creatorcontrib><creatorcontrib>Feng, Xing</creatorcontrib><creatorcontrib>Li, Jingbo</creatorcontrib><creatorcontrib>Zhao, Yu</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cao, Xuanhao</au><au>Lei, Zehong</au><au>Huang, Baoquan</au><au>Wei, Aixiang</au><au>Tao, Lili</au><au>Yang, Yibin</au><au>Zheng, Zhaoqiang</au><au>Feng, Xing</au><au>Li, Jingbo</au><au>Zhao, Yu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Non-Layered Te/In 2 S 3 Tunneling Heterojunctions with Ultrahigh Photoresponsivity and Fast Photoresponse</atitle><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle><addtitle>Small</addtitle><date>2022-05</date><risdate>2022</risdate><volume>18</volume><issue>18</issue><spage>e2200445</spage><pages>e2200445-</pages><issn>1613-6810</issn><eissn>1613-6829</eissn><abstract>A photodetector based on 2D non-layered materials can easily utilize the photogating effect to achieve considerable photogain, but at the cost of response speed. Here, a rationally designed tunneling heterojunction fabricated by vertical stacking of non-layered In S and Te flakes is studied systematically. The Te/In S heterojunctions possess type-II band alignment and can transfer to type-I or type-III depending on the electric field applied, allowing for tunable tunneling of the photoinduced carriers. The Te/In S tunneling heterojunction exhibits a reverse rectification ratio exceeding 10 , an ultralow forward current of 10 A, and a current on/off ratio over 10 . A photodetector based on the heterojunctions shows an ultrahigh photoresponsivity of 146 A W in the visible range. Furthermore, the devices exhibit a response time of 5 ms, which is two and four orders of magnitude faster than that of its constituent In S and Te. The simultaneously improved photocurrent and response speed are attributed to the direct tunneling of the photoinduced carriers, as well as a combined mechanism of photoconductive and photogating effects. In addition, the photodetector exhibits a clear photovoltaic effect, which can work in a self-powered mode.</abstract><cop>Germany</cop><pmid>35373465</pmid><doi>10.1002/smll.202200445</doi><orcidid>https://orcid.org/0000-0002-1001-206X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1613-6810
ispartof Small (Weinheim an der Bergstrasse, Germany), 2022-05, Vol.18 (18), p.e2200445
issn 1613-6810
1613-6829
language eng
recordid cdi_crossref_primary_10_1002_smll_202200445
source Wiley Online Library Journals Frontfile Complete
title Non-Layered Te/In 2 S 3 Tunneling Heterojunctions with Ultrahigh Photoresponsivity and Fast Photoresponse
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T21%3A54%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Non-Layered%20Te/In%202%20S%203%20Tunneling%20Heterojunctions%20with%20Ultrahigh%20Photoresponsivity%20and%20Fast%20Photoresponse&rft.jtitle=Small%20(Weinheim%20an%20der%20Bergstrasse,%20Germany)&rft.au=Cao,%20Xuanhao&rft.date=2022-05&rft.volume=18&rft.issue=18&rft.spage=e2200445&rft.pages=e2200445-&rft.issn=1613-6810&rft.eissn=1613-6829&rft_id=info:doi/10.1002/smll.202200445&rft_dat=%3Cpubmed_cross%3E35373465%3C/pubmed_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/35373465&rfr_iscdi=true