In Situ Constructed Ionic‐Electronic Dual‐Conducting Scaffold with Reinforced Interface for High‐Performance Sodium Metal Anodes
The formation of severe dendritic sodium (Na) microstructure reduces the reversibility of anode and further hinders its practical implementation. In this work, an ionic‐electronic dual‐conducting (IEDC) scaffold composed of Na3P and carbon nanotubes is in situ developed by a scalable strategy with s...
Gespeichert in:
Veröffentlicht in: | Small (Weinheim an der Bergstrasse, Germany) Germany), 2021-11, Vol.17 (45), p.e2104021-n/a |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 45 |
container_start_page | e2104021 |
container_title | Small (Weinheim an der Bergstrasse, Germany) |
container_volume | 17 |
creator | Lin, Kui Xu, Xiaofu Qin, Xianying Wu, Junxiong Liu, Qi Tang, Zhiyun He, Shun Ye, Yonghuang Kang, Feiyu Li, Baohua |
description | The formation of severe dendritic sodium (Na) microstructure reduces the reversibility of anode and further hinders its practical implementation. In this work, an ionic‐electronic dual‐conducting (IEDC) scaffold composed of Na3P and carbon nanotubes is in situ developed by a scalable strategy with subsequent alloying reaction, for realizing dendrite‐free Na deposition under high current density and large areal capacity. The in situ formed Na3P with high sodiophilicity not only sets up a hierarchically efficient ionic conducting network, but also participates in the construction of reinforced solid electrolyte interphase, while carbon nanotubes can assemble an electronic conducting framework. As a result, the multifunctional IEDC scaffold contributes to smooth Na plating and exceptionally reversible Na stripping. High average Coulombic efficiency of 99.8% after prolonged 1200 cycles at 3 mA cm−2 and small overpotential of 20 mV over 250 h (equals to 530 cycles) at high rate of 5 mA cm−2 are obtained. The high availability of Na in IEDC scaffold enables the impressive performance of full cell with limited Na, using Na3V2(PO4)3 (NVP) cathode at practical level. More importantly, the as‐developed anode‐free full cell with IEDC||NVP configuration delivers a high capacity retention with long lifetime, indicating its great potential for practical Na metal batteries.
An ionic‐electronic dual‐conducting (IEDC) scaffold comprising sodiophilic Na3P and carbon nanotubes with enhanced ion/electron migration is in situ developed for sodium (Na) metal anode. Uniform Na deposits with floatable Na3P and reinforced interface are obtained at high current density and areal capacity. The potential of IEDC scaffold in realistic application is effectively verified in anode‐free full cell configuration. |
doi_str_mv | 10.1002/smll.202104021 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_smll_202104021</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2595890400</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3501-edc0385f4805744b7369fb5b09902fbb34d9e03b3dfafe80a3298c262652da153</originalsourceid><addsrcrecordid>eNqFkTtLBDEYRQdR8NlaB2xsdv2STGYnpayvhRXF1XrI5KGRTKLJDGJnZe1v9JeYZUXBxiaPyzkfIbco9jGMMQA5Sp1zYwIEQ5mXtWILV5iOqprw9Z8zhs1iO6VHAIpJOdkq3mceLWw_oGnwqY-D7LVCs-Ct_Hz7OHVa9nF5QSeDcDnJlMqM9fdoIYUxwSn0YvsHdKOtNyHKpe17HY2QGuUAXdj7hyxe5yjETvgcL4KyQ4cudS8cOvZB6bRbbBjhkt773neKu7PT2-nFaH51Ppsez0eSMsAjrSTQmpmyBjYpy3ZCK25a1gLnQEzb0lJxDbSlygijaxCU8FqSilSMKIEZ3SkOV3OfYngedOqbziapnRNehyE1hE1qzDAjdUYP_qCPYYg-vy5TnNU8fzNkaryiZAwpRW2ap2g7EV8bDM2ylmZZS_NTSxb4SnixTr_-QzeLy_n81_0C2VGVHA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2595890400</pqid></control><display><type>article</type><title>In Situ Constructed Ionic‐Electronic Dual‐Conducting Scaffold with Reinforced Interface for High‐Performance Sodium Metal Anodes</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Lin, Kui ; Xu, Xiaofu ; Qin, Xianying ; Wu, Junxiong ; Liu, Qi ; Tang, Zhiyun ; He, Shun ; Ye, Yonghuang ; Kang, Feiyu ; Li, Baohua</creator><creatorcontrib>Lin, Kui ; Xu, Xiaofu ; Qin, Xianying ; Wu, Junxiong ; Liu, Qi ; Tang, Zhiyun ; He, Shun ; Ye, Yonghuang ; Kang, Feiyu ; Li, Baohua</creatorcontrib><description>The formation of severe dendritic sodium (Na) microstructure reduces the reversibility of anode and further hinders its practical implementation. In this work, an ionic‐electronic dual‐conducting (IEDC) scaffold composed of Na3P and carbon nanotubes is in situ developed by a scalable strategy with subsequent alloying reaction, for realizing dendrite‐free Na deposition under high current density and large areal capacity. The in situ formed Na3P with high sodiophilicity not only sets up a hierarchically efficient ionic conducting network, but also participates in the construction of reinforced solid electrolyte interphase, while carbon nanotubes can assemble an electronic conducting framework. As a result, the multifunctional IEDC scaffold contributes to smooth Na plating and exceptionally reversible Na stripping. High average Coulombic efficiency of 99.8% after prolonged 1200 cycles at 3 mA cm−2 and small overpotential of 20 mV over 250 h (equals to 530 cycles) at high rate of 5 mA cm−2 are obtained. The high availability of Na in IEDC scaffold enables the impressive performance of full cell with limited Na, using Na3V2(PO4)3 (NVP) cathode at practical level. More importantly, the as‐developed anode‐free full cell with IEDC||NVP configuration delivers a high capacity retention with long lifetime, indicating its great potential for practical Na metal batteries.
An ionic‐electronic dual‐conducting (IEDC) scaffold comprising sodiophilic Na3P and carbon nanotubes with enhanced ion/electron migration is in situ developed for sodium (Na) metal anode. Uniform Na deposits with floatable Na3P and reinforced interface are obtained at high current density and areal capacity. The potential of IEDC scaffold in realistic application is effectively verified in anode‐free full cell configuration.</description><identifier>ISSN: 1613-6810</identifier><identifier>EISSN: 1613-6829</identifier><identifier>DOI: 10.1002/smll.202104021</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Anodes ; Carbon nanotubes ; Dendritic structure ; high rate performance ; ionic‐electronic dual‐conducting scaffold ; Nanotechnology ; Scaffolds ; sodiophilic Na 3P ; Sodium ; sodium metal anode ; Solid electrolytes</subject><ispartof>Small (Weinheim an der Bergstrasse, Germany), 2021-11, Vol.17 (45), p.e2104021-n/a</ispartof><rights>2021 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3501-edc0385f4805744b7369fb5b09902fbb34d9e03b3dfafe80a3298c262652da153</citedby><cites>FETCH-LOGICAL-c3501-edc0385f4805744b7369fb5b09902fbb34d9e03b3dfafe80a3298c262652da153</cites><orcidid>0000-0002-4876-2659</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsmll.202104021$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsmll.202104021$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Lin, Kui</creatorcontrib><creatorcontrib>Xu, Xiaofu</creatorcontrib><creatorcontrib>Qin, Xianying</creatorcontrib><creatorcontrib>Wu, Junxiong</creatorcontrib><creatorcontrib>Liu, Qi</creatorcontrib><creatorcontrib>Tang, Zhiyun</creatorcontrib><creatorcontrib>He, Shun</creatorcontrib><creatorcontrib>Ye, Yonghuang</creatorcontrib><creatorcontrib>Kang, Feiyu</creatorcontrib><creatorcontrib>Li, Baohua</creatorcontrib><title>In Situ Constructed Ionic‐Electronic Dual‐Conducting Scaffold with Reinforced Interface for High‐Performance Sodium Metal Anodes</title><title>Small (Weinheim an der Bergstrasse, Germany)</title><description>The formation of severe dendritic sodium (Na) microstructure reduces the reversibility of anode and further hinders its practical implementation. In this work, an ionic‐electronic dual‐conducting (IEDC) scaffold composed of Na3P and carbon nanotubes is in situ developed by a scalable strategy with subsequent alloying reaction, for realizing dendrite‐free Na deposition under high current density and large areal capacity. The in situ formed Na3P with high sodiophilicity not only sets up a hierarchically efficient ionic conducting network, but also participates in the construction of reinforced solid electrolyte interphase, while carbon nanotubes can assemble an electronic conducting framework. As a result, the multifunctional IEDC scaffold contributes to smooth Na plating and exceptionally reversible Na stripping. High average Coulombic efficiency of 99.8% after prolonged 1200 cycles at 3 mA cm−2 and small overpotential of 20 mV over 250 h (equals to 530 cycles) at high rate of 5 mA cm−2 are obtained. The high availability of Na in IEDC scaffold enables the impressive performance of full cell with limited Na, using Na3V2(PO4)3 (NVP) cathode at practical level. More importantly, the as‐developed anode‐free full cell with IEDC||NVP configuration delivers a high capacity retention with long lifetime, indicating its great potential for practical Na metal batteries.
An ionic‐electronic dual‐conducting (IEDC) scaffold comprising sodiophilic Na3P and carbon nanotubes with enhanced ion/electron migration is in situ developed for sodium (Na) metal anode. Uniform Na deposits with floatable Na3P and reinforced interface are obtained at high current density and areal capacity. The potential of IEDC scaffold in realistic application is effectively verified in anode‐free full cell configuration.</description><subject>Anodes</subject><subject>Carbon nanotubes</subject><subject>Dendritic structure</subject><subject>high rate performance</subject><subject>ionic‐electronic dual‐conducting scaffold</subject><subject>Nanotechnology</subject><subject>Scaffolds</subject><subject>sodiophilic Na 3P</subject><subject>Sodium</subject><subject>sodium metal anode</subject><subject>Solid electrolytes</subject><issn>1613-6810</issn><issn>1613-6829</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkTtLBDEYRQdR8NlaB2xsdv2STGYnpayvhRXF1XrI5KGRTKLJDGJnZe1v9JeYZUXBxiaPyzkfIbco9jGMMQA5Sp1zYwIEQ5mXtWILV5iOqprw9Z8zhs1iO6VHAIpJOdkq3mceLWw_oGnwqY-D7LVCs-Ct_Hz7OHVa9nF5QSeDcDnJlMqM9fdoIYUxwSn0YvsHdKOtNyHKpe17HY2QGuUAXdj7hyxe5yjETvgcL4KyQ4cudS8cOvZB6bRbbBjhkt773neKu7PT2-nFaH51Ppsez0eSMsAjrSTQmpmyBjYpy3ZCK25a1gLnQEzb0lJxDbSlygijaxCU8FqSilSMKIEZ3SkOV3OfYngedOqbziapnRNehyE1hE1qzDAjdUYP_qCPYYg-vy5TnNU8fzNkaryiZAwpRW2ap2g7EV8bDM2ylmZZS_NTSxb4SnixTr_-QzeLy_n81_0C2VGVHA</recordid><startdate>20211101</startdate><enddate>20211101</enddate><creator>Lin, Kui</creator><creator>Xu, Xiaofu</creator><creator>Qin, Xianying</creator><creator>Wu, Junxiong</creator><creator>Liu, Qi</creator><creator>Tang, Zhiyun</creator><creator>He, Shun</creator><creator>Ye, Yonghuang</creator><creator>Kang, Feiyu</creator><creator>Li, Baohua</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-4876-2659</orcidid></search><sort><creationdate>20211101</creationdate><title>In Situ Constructed Ionic‐Electronic Dual‐Conducting Scaffold with Reinforced Interface for High‐Performance Sodium Metal Anodes</title><author>Lin, Kui ; Xu, Xiaofu ; Qin, Xianying ; Wu, Junxiong ; Liu, Qi ; Tang, Zhiyun ; He, Shun ; Ye, Yonghuang ; Kang, Feiyu ; Li, Baohua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3501-edc0385f4805744b7369fb5b09902fbb34d9e03b3dfafe80a3298c262652da153</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Anodes</topic><topic>Carbon nanotubes</topic><topic>Dendritic structure</topic><topic>high rate performance</topic><topic>ionic‐electronic dual‐conducting scaffold</topic><topic>Nanotechnology</topic><topic>Scaffolds</topic><topic>sodiophilic Na 3P</topic><topic>Sodium</topic><topic>sodium metal anode</topic><topic>Solid electrolytes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lin, Kui</creatorcontrib><creatorcontrib>Xu, Xiaofu</creatorcontrib><creatorcontrib>Qin, Xianying</creatorcontrib><creatorcontrib>Wu, Junxiong</creatorcontrib><creatorcontrib>Liu, Qi</creatorcontrib><creatorcontrib>Tang, Zhiyun</creatorcontrib><creatorcontrib>He, Shun</creatorcontrib><creatorcontrib>Ye, Yonghuang</creatorcontrib><creatorcontrib>Kang, Feiyu</creatorcontrib><creatorcontrib>Li, Baohua</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lin, Kui</au><au>Xu, Xiaofu</au><au>Qin, Xianying</au><au>Wu, Junxiong</au><au>Liu, Qi</au><au>Tang, Zhiyun</au><au>He, Shun</au><au>Ye, Yonghuang</au><au>Kang, Feiyu</au><au>Li, Baohua</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In Situ Constructed Ionic‐Electronic Dual‐Conducting Scaffold with Reinforced Interface for High‐Performance Sodium Metal Anodes</atitle><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle><date>2021-11-01</date><risdate>2021</risdate><volume>17</volume><issue>45</issue><spage>e2104021</spage><epage>n/a</epage><pages>e2104021-n/a</pages><issn>1613-6810</issn><eissn>1613-6829</eissn><abstract>The formation of severe dendritic sodium (Na) microstructure reduces the reversibility of anode and further hinders its practical implementation. In this work, an ionic‐electronic dual‐conducting (IEDC) scaffold composed of Na3P and carbon nanotubes is in situ developed by a scalable strategy with subsequent alloying reaction, for realizing dendrite‐free Na deposition under high current density and large areal capacity. The in situ formed Na3P with high sodiophilicity not only sets up a hierarchically efficient ionic conducting network, but also participates in the construction of reinforced solid electrolyte interphase, while carbon nanotubes can assemble an electronic conducting framework. As a result, the multifunctional IEDC scaffold contributes to smooth Na plating and exceptionally reversible Na stripping. High average Coulombic efficiency of 99.8% after prolonged 1200 cycles at 3 mA cm−2 and small overpotential of 20 mV over 250 h (equals to 530 cycles) at high rate of 5 mA cm−2 are obtained. The high availability of Na in IEDC scaffold enables the impressive performance of full cell with limited Na, using Na3V2(PO4)3 (NVP) cathode at practical level. More importantly, the as‐developed anode‐free full cell with IEDC||NVP configuration delivers a high capacity retention with long lifetime, indicating its great potential for practical Na metal batteries.
An ionic‐electronic dual‐conducting (IEDC) scaffold comprising sodiophilic Na3P and carbon nanotubes with enhanced ion/electron migration is in situ developed for sodium (Na) metal anode. Uniform Na deposits with floatable Na3P and reinforced interface are obtained at high current density and areal capacity. The potential of IEDC scaffold in realistic application is effectively verified in anode‐free full cell configuration.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/smll.202104021</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-4876-2659</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1613-6810 |
ispartof | Small (Weinheim an der Bergstrasse, Germany), 2021-11, Vol.17 (45), p.e2104021-n/a |
issn | 1613-6810 1613-6829 |
language | eng |
recordid | cdi_crossref_primary_10_1002_smll_202104021 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Anodes Carbon nanotubes Dendritic structure high rate performance ionic‐electronic dual‐conducting scaffold Nanotechnology Scaffolds sodiophilic Na 3P Sodium sodium metal anode Solid electrolytes |
title | In Situ Constructed Ionic‐Electronic Dual‐Conducting Scaffold with Reinforced Interface for High‐Performance Sodium Metal Anodes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-18T21%3A19%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In%20Situ%20Constructed%20Ionic%E2%80%90Electronic%20Dual%E2%80%90Conducting%20Scaffold%20with%20Reinforced%20Interface%20for%20High%E2%80%90Performance%20Sodium%20Metal%20Anodes&rft.jtitle=Small%20(Weinheim%20an%20der%20Bergstrasse,%20Germany)&rft.au=Lin,%20Kui&rft.date=2021-11-01&rft.volume=17&rft.issue=45&rft.spage=e2104021&rft.epage=n/a&rft.pages=e2104021-n/a&rft.issn=1613-6810&rft.eissn=1613-6829&rft_id=info:doi/10.1002/smll.202104021&rft_dat=%3Cproquest_cross%3E2595890400%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2595890400&rft_id=info:pmid/&rfr_iscdi=true |