Additive Destabilization of Porous Magnesium Borohydride Framework with Core‐Shell Structure

Design of interfaces with thermodynamic and kinetic specificity is of great importance for hydrogen storage from both an applied and fundamental perspective. Here, in order to destabilize the metal hydride and protect the dehydrogenated products from oxidizing, a unique core‐shell structure of porou...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Small (Weinheim an der Bergstrasse, Germany) Germany), 2021-11, Vol.17 (44), p.e2101989-n/a, Article 2101989
Hauptverfasser: Dun, Chaochao, Jeong, Sohee, Liu, Yi‐Sheng, Leick, Noemi, Mattox, Tracy M., Guo, Jinghua, Lee, Joo‐Won, Gennett, Thomas, Stavila, Vitalie, Urban, Jeffrey J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 44
container_start_page e2101989
container_title Small (Weinheim an der Bergstrasse, Germany)
container_volume 17
creator Dun, Chaochao
Jeong, Sohee
Liu, Yi‐Sheng
Leick, Noemi
Mattox, Tracy M.
Guo, Jinghua
Lee, Joo‐Won
Gennett, Thomas
Stavila, Vitalie
Urban, Jeffrey J.
description Design of interfaces with thermodynamic and kinetic specificity is of great importance for hydrogen storage from both an applied and fundamental perspective. Here, in order to destabilize the metal hydride and protect the dehydrogenated products from oxidizing, a unique core‐shell structure of porous Mg(BH4)2‐based framework with a thin layer (no more than 5 nm) of MgCl2 additives on the surface, has been proposed and synthesized via a wet‐chemical method. The local structure and electronic state of the present complex system are systematically investigated to understand the correlation between the distribution of additives and dehydrogenation property of Mg(BH4)2. A significant improvement is achieved for hydrogen desorption with chlorides: initial hydrogen release from MgCl2 decorated γ‐phase Mg(BH4)2 particles commences at 100 °C and reaches a maximum of 9.4 wt% at 385 °C. Besides the decreased decomposition temperature, an activation barrier of about 76.4 kJ mol−1 lower than that of Mg(BH4)2 without MgCl2 is obtained. Moreover, MgCl2 decoration can also prevent the whole decomposed system (both Mg‐ and B‐ elements) from oxidizing, which is a necessary condition to reversibility. A unique core‐shell structure of porous γ‐phase Mg(BH4)2 with a thin layer of MgCl2 additives on the surface, has been proposed and synthesized via a wet‐chemical method. The initial hydrogen release from MgCl2 decorated Mg(BH4)2 particles commences at 100 °C and reaches a maximum of 9.4 wt% at 385 °C.
doi_str_mv 10.1002/smll.202101989
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_smll_202101989</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2592880762</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4079-d3df44f7b4463e6c1097ed03118bf39a39bb802e668d5e74b878cb07a13a86503</originalsourceid><addsrcrecordid>eNqNkU1v1DAQhiMEoh9w5Ygieqx2GduJP44lpbTSViAtXLESZ8K6JHGxHVbLiZ_Ab-SX4GWX5QinGY2ed_TOO1n2jMCcANCXYej7OQVKgCipHmTHhBM245Kqh4eewFF2EsIdACO0EI-zI1aUXAlKjrOPF21ro_2K-SWGWDe2t9_qaN2Yuy5_57ybQn5bfxox2GnIX6XBatN622J-5esB185_ztc2rvLKefz5_cdyhX2fL6OfTJw8PskedXUf8Om-nmYfrl6_r65ni7dvbqqLxcwUINSsZW1XFJ1oioIz5IaAEtgmu0Q2HVM1U00jgSLnsi1RFI0U0jQgasJqyUtgp9mL3V4XotXB2IhmZdw4oomaSEpLJhJ0toPuvfsypXP1nZv8mHxpWioqJQhOEzXfUca7EDx2-t7bofYbTUBvM9fbzPUh8yR4vl87NQO2B_xPyAk43wFrbFyXzOFo8IABAFdKFYKlDra0_H-6svH3tyo3jTFJ1V5qe9z8w7de3i4Wf6_4BRPTr54</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2592880762</pqid></control><display><type>article</type><title>Additive Destabilization of Porous Magnesium Borohydride Framework with Core‐Shell Structure</title><source>MEDLINE</source><source>Access via Wiley Online Library</source><source>Web of Science - Science Citation Index Expanded - 2021&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><creator>Dun, Chaochao ; Jeong, Sohee ; Liu, Yi‐Sheng ; Leick, Noemi ; Mattox, Tracy M. ; Guo, Jinghua ; Lee, Joo‐Won ; Gennett, Thomas ; Stavila, Vitalie ; Urban, Jeffrey J.</creator><creatorcontrib>Dun, Chaochao ; Jeong, Sohee ; Liu, Yi‐Sheng ; Leick, Noemi ; Mattox, Tracy M. ; Guo, Jinghua ; Lee, Joo‐Won ; Gennett, Thomas ; Stavila, Vitalie ; Urban, Jeffrey J.</creatorcontrib><description>Design of interfaces with thermodynamic and kinetic specificity is of great importance for hydrogen storage from both an applied and fundamental perspective. Here, in order to destabilize the metal hydride and protect the dehydrogenated products from oxidizing, a unique core‐shell structure of porous Mg(BH4)2‐based framework with a thin layer (no more than 5 nm) of MgCl2 additives on the surface, has been proposed and synthesized via a wet‐chemical method. The local structure and electronic state of the present complex system are systematically investigated to understand the correlation between the distribution of additives and dehydrogenation property of Mg(BH4)2. A significant improvement is achieved for hydrogen desorption with chlorides: initial hydrogen release from MgCl2 decorated γ‐phase Mg(BH4)2 particles commences at 100 °C and reaches a maximum of 9.4 wt% at 385 °C. Besides the decreased decomposition temperature, an activation barrier of about 76.4 kJ mol−1 lower than that of Mg(BH4)2 without MgCl2 is obtained. Moreover, MgCl2 decoration can also prevent the whole decomposed system (both Mg‐ and B‐ elements) from oxidizing, which is a necessary condition to reversibility. A unique core‐shell structure of porous γ‐phase Mg(BH4)2 with a thin layer of MgCl2 additives on the surface, has been proposed and synthesized via a wet‐chemical method. The initial hydrogen release from MgCl2 decorated Mg(BH4)2 particles commences at 100 °C and reaches a maximum of 9.4 wt% at 385 °C.</description><identifier>ISSN: 1613-6810</identifier><identifier>EISSN: 1613-6829</identifier><identifier>DOI: 10.1002/smll.202101989</identifier><identifier>PMID: 34569721</identifier><language>eng</language><publisher>WEINHEIM: Wiley</publisher><subject>Additives ; Borohydrides ; Chemical synthesis ; Chemistry ; Chemistry, Multidisciplinary ; Chemistry, Physical ; Complex systems ; Core-shell structure ; Decomposition ; Dehydrogenation ; Destabilization ; Electron states ; Gamma phase ; Hydrogen ; Hydrogen storage ; Magnesium ; Magnesium chloride ; Materials Science ; Materials Science, Multidisciplinary ; Metal hydrides ; Nanoscience &amp; Nanotechnology ; Nanotechnology ; Oxidation ; Physical Sciences ; Physics ; Physics, Applied ; Physics, Condensed Matter ; Porosity ; Science &amp; Technology ; Science &amp; Technology - Other Topics ; Technology ; Thermodynamics</subject><ispartof>Small (Weinheim an der Bergstrasse, Germany), 2021-11, Vol.17 (44), p.e2101989-n/a, Article 2101989</ispartof><rights>2021 Wiley‐VCH GmbH</rights><rights>2021 Wiley-VCH GmbH.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>7</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000699947300001</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c4079-d3df44f7b4463e6c1097ed03118bf39a39bb802e668d5e74b878cb07a13a86503</citedby><cites>FETCH-LOGICAL-c4079-d3df44f7b4463e6c1097ed03118bf39a39bb802e668d5e74b878cb07a13a86503</cites><orcidid>0000-0003-0981-0432 ; 0000-0002-1085-1947 ; 0000-0002-2014-6264 ; 0000-0002-8576-2172 ; 0000-0003-4909-2869 ; 0000-0002-3215-6478 ; 0000-0002-6520-830X ; 0000-0003-1259-6588 ; 0000000312596588 ; 000000026520830X ; 0000000349092869 ; 0000000232156478 ; 0000000210851947 ; 0000000285762172 ; 0000000220146264 ; 0000000309810432</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsmll.202101989$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsmll.202101989$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,315,782,786,887,1419,27933,27934,39267,45583,45584</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34569721$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1822537$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Dun, Chaochao</creatorcontrib><creatorcontrib>Jeong, Sohee</creatorcontrib><creatorcontrib>Liu, Yi‐Sheng</creatorcontrib><creatorcontrib>Leick, Noemi</creatorcontrib><creatorcontrib>Mattox, Tracy M.</creatorcontrib><creatorcontrib>Guo, Jinghua</creatorcontrib><creatorcontrib>Lee, Joo‐Won</creatorcontrib><creatorcontrib>Gennett, Thomas</creatorcontrib><creatorcontrib>Stavila, Vitalie</creatorcontrib><creatorcontrib>Urban, Jeffrey J.</creatorcontrib><title>Additive Destabilization of Porous Magnesium Borohydride Framework with Core‐Shell Structure</title><title>Small (Weinheim an der Bergstrasse, Germany)</title><addtitle>SMALL</addtitle><addtitle>Small</addtitle><description>Design of interfaces with thermodynamic and kinetic specificity is of great importance for hydrogen storage from both an applied and fundamental perspective. Here, in order to destabilize the metal hydride and protect the dehydrogenated products from oxidizing, a unique core‐shell structure of porous Mg(BH4)2‐based framework with a thin layer (no more than 5 nm) of MgCl2 additives on the surface, has been proposed and synthesized via a wet‐chemical method. The local structure and electronic state of the present complex system are systematically investigated to understand the correlation between the distribution of additives and dehydrogenation property of Mg(BH4)2. A significant improvement is achieved for hydrogen desorption with chlorides: initial hydrogen release from MgCl2 decorated γ‐phase Mg(BH4)2 particles commences at 100 °C and reaches a maximum of 9.4 wt% at 385 °C. Besides the decreased decomposition temperature, an activation barrier of about 76.4 kJ mol−1 lower than that of Mg(BH4)2 without MgCl2 is obtained. Moreover, MgCl2 decoration can also prevent the whole decomposed system (both Mg‐ and B‐ elements) from oxidizing, which is a necessary condition to reversibility. A unique core‐shell structure of porous γ‐phase Mg(BH4)2 with a thin layer of MgCl2 additives on the surface, has been proposed and synthesized via a wet‐chemical method. The initial hydrogen release from MgCl2 decorated Mg(BH4)2 particles commences at 100 °C and reaches a maximum of 9.4 wt% at 385 °C.</description><subject>Additives</subject><subject>Borohydrides</subject><subject>Chemical synthesis</subject><subject>Chemistry</subject><subject>Chemistry, Multidisciplinary</subject><subject>Chemistry, Physical</subject><subject>Complex systems</subject><subject>Core-shell structure</subject><subject>Decomposition</subject><subject>Dehydrogenation</subject><subject>Destabilization</subject><subject>Electron states</subject><subject>Gamma phase</subject><subject>Hydrogen</subject><subject>Hydrogen storage</subject><subject>Magnesium</subject><subject>Magnesium chloride</subject><subject>Materials Science</subject><subject>Materials Science, Multidisciplinary</subject><subject>Metal hydrides</subject><subject>Nanoscience &amp; Nanotechnology</subject><subject>Nanotechnology</subject><subject>Oxidation</subject><subject>Physical Sciences</subject><subject>Physics</subject><subject>Physics, Applied</subject><subject>Physics, Condensed Matter</subject><subject>Porosity</subject><subject>Science &amp; Technology</subject><subject>Science &amp; Technology - Other Topics</subject><subject>Technology</subject><subject>Thermodynamics</subject><issn>1613-6810</issn><issn>1613-6829</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><sourceid>EIF</sourceid><recordid>eNqNkU1v1DAQhiMEoh9w5Ygieqx2GduJP44lpbTSViAtXLESZ8K6JHGxHVbLiZ_Ab-SX4GWX5QinGY2ed_TOO1n2jMCcANCXYej7OQVKgCipHmTHhBM245Kqh4eewFF2EsIdACO0EI-zI1aUXAlKjrOPF21ro_2K-SWGWDe2t9_qaN2Yuy5_57ybQn5bfxox2GnIX6XBatN622J-5esB185_ztc2rvLKefz5_cdyhX2fL6OfTJw8PskedXUf8Om-nmYfrl6_r65ni7dvbqqLxcwUINSsZW1XFJ1oioIz5IaAEtgmu0Q2HVM1U00jgSLnsi1RFI0U0jQgasJqyUtgp9mL3V4XotXB2IhmZdw4oomaSEpLJhJ0toPuvfsypXP1nZv8mHxpWioqJQhOEzXfUca7EDx2-t7bofYbTUBvM9fbzPUh8yR4vl87NQO2B_xPyAk43wFrbFyXzOFo8IABAFdKFYKlDra0_H-6svH3tyo3jTFJ1V5qe9z8w7de3i4Wf6_4BRPTr54</recordid><startdate>20211101</startdate><enddate>20211101</enddate><creator>Dun, Chaochao</creator><creator>Jeong, Sohee</creator><creator>Liu, Yi‐Sheng</creator><creator>Leick, Noemi</creator><creator>Mattox, Tracy M.</creator><creator>Guo, Jinghua</creator><creator>Lee, Joo‐Won</creator><creator>Gennett, Thomas</creator><creator>Stavila, Vitalie</creator><creator>Urban, Jeffrey J.</creator><general>Wiley</general><general>Wiley Subscription Services, Inc</general><general>Wiley Blackwell (John Wiley &amp; Sons)</general><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-0981-0432</orcidid><orcidid>https://orcid.org/0000-0002-1085-1947</orcidid><orcidid>https://orcid.org/0000-0002-2014-6264</orcidid><orcidid>https://orcid.org/0000-0002-8576-2172</orcidid><orcidid>https://orcid.org/0000-0003-4909-2869</orcidid><orcidid>https://orcid.org/0000-0002-3215-6478</orcidid><orcidid>https://orcid.org/0000-0002-6520-830X</orcidid><orcidid>https://orcid.org/0000-0003-1259-6588</orcidid><orcidid>https://orcid.org/0000000312596588</orcidid><orcidid>https://orcid.org/000000026520830X</orcidid><orcidid>https://orcid.org/0000000349092869</orcidid><orcidid>https://orcid.org/0000000232156478</orcidid><orcidid>https://orcid.org/0000000210851947</orcidid><orcidid>https://orcid.org/0000000285762172</orcidid><orcidid>https://orcid.org/0000000220146264</orcidid><orcidid>https://orcid.org/0000000309810432</orcidid></search><sort><creationdate>20211101</creationdate><title>Additive Destabilization of Porous Magnesium Borohydride Framework with Core‐Shell Structure</title><author>Dun, Chaochao ; Jeong, Sohee ; Liu, Yi‐Sheng ; Leick, Noemi ; Mattox, Tracy M. ; Guo, Jinghua ; Lee, Joo‐Won ; Gennett, Thomas ; Stavila, Vitalie ; Urban, Jeffrey J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4079-d3df44f7b4463e6c1097ed03118bf39a39bb802e668d5e74b878cb07a13a86503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Additives</topic><topic>Borohydrides</topic><topic>Chemical synthesis</topic><topic>Chemistry</topic><topic>Chemistry, Multidisciplinary</topic><topic>Chemistry, Physical</topic><topic>Complex systems</topic><topic>Core-shell structure</topic><topic>Decomposition</topic><topic>Dehydrogenation</topic><topic>Destabilization</topic><topic>Electron states</topic><topic>Gamma phase</topic><topic>Hydrogen</topic><topic>Hydrogen storage</topic><topic>Magnesium</topic><topic>Magnesium chloride</topic><topic>Materials Science</topic><topic>Materials Science, Multidisciplinary</topic><topic>Metal hydrides</topic><topic>Nanoscience &amp; Nanotechnology</topic><topic>Nanotechnology</topic><topic>Oxidation</topic><topic>Physical Sciences</topic><topic>Physics</topic><topic>Physics, Applied</topic><topic>Physics, Condensed Matter</topic><topic>Porosity</topic><topic>Science &amp; Technology</topic><topic>Science &amp; Technology - Other Topics</topic><topic>Technology</topic><topic>Thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dun, Chaochao</creatorcontrib><creatorcontrib>Jeong, Sohee</creatorcontrib><creatorcontrib>Liu, Yi‐Sheng</creatorcontrib><creatorcontrib>Leick, Noemi</creatorcontrib><creatorcontrib>Mattox, Tracy M.</creatorcontrib><creatorcontrib>Guo, Jinghua</creatorcontrib><creatorcontrib>Lee, Joo‐Won</creatorcontrib><creatorcontrib>Gennett, Thomas</creatorcontrib><creatorcontrib>Stavila, Vitalie</creatorcontrib><creatorcontrib>Urban, Jeffrey J.</creatorcontrib><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dun, Chaochao</au><au>Jeong, Sohee</au><au>Liu, Yi‐Sheng</au><au>Leick, Noemi</au><au>Mattox, Tracy M.</au><au>Guo, Jinghua</au><au>Lee, Joo‐Won</au><au>Gennett, Thomas</au><au>Stavila, Vitalie</au><au>Urban, Jeffrey J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Additive Destabilization of Porous Magnesium Borohydride Framework with Core‐Shell Structure</atitle><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle><stitle>SMALL</stitle><addtitle>Small</addtitle><date>2021-11-01</date><risdate>2021</risdate><volume>17</volume><issue>44</issue><spage>e2101989</spage><epage>n/a</epage><pages>e2101989-n/a</pages><artnum>2101989</artnum><issn>1613-6810</issn><eissn>1613-6829</eissn><abstract>Design of interfaces with thermodynamic and kinetic specificity is of great importance for hydrogen storage from both an applied and fundamental perspective. Here, in order to destabilize the metal hydride and protect the dehydrogenated products from oxidizing, a unique core‐shell structure of porous Mg(BH4)2‐based framework with a thin layer (no more than 5 nm) of MgCl2 additives on the surface, has been proposed and synthesized via a wet‐chemical method. The local structure and electronic state of the present complex system are systematically investigated to understand the correlation between the distribution of additives and dehydrogenation property of Mg(BH4)2. A significant improvement is achieved for hydrogen desorption with chlorides: initial hydrogen release from MgCl2 decorated γ‐phase Mg(BH4)2 particles commences at 100 °C and reaches a maximum of 9.4 wt% at 385 °C. Besides the decreased decomposition temperature, an activation barrier of about 76.4 kJ mol−1 lower than that of Mg(BH4)2 without MgCl2 is obtained. Moreover, MgCl2 decoration can also prevent the whole decomposed system (both Mg‐ and B‐ elements) from oxidizing, which is a necessary condition to reversibility. A unique core‐shell structure of porous γ‐phase Mg(BH4)2 with a thin layer of MgCl2 additives on the surface, has been proposed and synthesized via a wet‐chemical method. The initial hydrogen release from MgCl2 decorated Mg(BH4)2 particles commences at 100 °C and reaches a maximum of 9.4 wt% at 385 °C.</abstract><cop>WEINHEIM</cop><pub>Wiley</pub><pmid>34569721</pmid><doi>10.1002/smll.202101989</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-0981-0432</orcidid><orcidid>https://orcid.org/0000-0002-1085-1947</orcidid><orcidid>https://orcid.org/0000-0002-2014-6264</orcidid><orcidid>https://orcid.org/0000-0002-8576-2172</orcidid><orcidid>https://orcid.org/0000-0003-4909-2869</orcidid><orcidid>https://orcid.org/0000-0002-3215-6478</orcidid><orcidid>https://orcid.org/0000-0002-6520-830X</orcidid><orcidid>https://orcid.org/0000-0003-1259-6588</orcidid><orcidid>https://orcid.org/0000000312596588</orcidid><orcidid>https://orcid.org/000000026520830X</orcidid><orcidid>https://orcid.org/0000000349092869</orcidid><orcidid>https://orcid.org/0000000232156478</orcidid><orcidid>https://orcid.org/0000000210851947</orcidid><orcidid>https://orcid.org/0000000285762172</orcidid><orcidid>https://orcid.org/0000000220146264</orcidid><orcidid>https://orcid.org/0000000309810432</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1613-6810
ispartof Small (Weinheim an der Bergstrasse, Germany), 2021-11, Vol.17 (44), p.e2101989-n/a, Article 2101989
issn 1613-6810
1613-6829
language eng
recordid cdi_crossref_primary_10_1002_smll_202101989
source MEDLINE; Access via Wiley Online Library; Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />
subjects Additives
Borohydrides
Chemical synthesis
Chemistry
Chemistry, Multidisciplinary
Chemistry, Physical
Complex systems
Core-shell structure
Decomposition
Dehydrogenation
Destabilization
Electron states
Gamma phase
Hydrogen
Hydrogen storage
Magnesium
Magnesium chloride
Materials Science
Materials Science, Multidisciplinary
Metal hydrides
Nanoscience & Nanotechnology
Nanotechnology
Oxidation
Physical Sciences
Physics
Physics, Applied
Physics, Condensed Matter
Porosity
Science & Technology
Science & Technology - Other Topics
Technology
Thermodynamics
title Additive Destabilization of Porous Magnesium Borohydride Framework with Core‐Shell Structure
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-03T08%3A11%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Additive%20Destabilization%20of%20Porous%20Magnesium%20Borohydride%20Framework%20with%20Core%E2%80%90Shell%20Structure&rft.jtitle=Small%20(Weinheim%20an%20der%20Bergstrasse,%20Germany)&rft.au=Dun,%20Chaochao&rft.date=2021-11-01&rft.volume=17&rft.issue=44&rft.spage=e2101989&rft.epage=n/a&rft.pages=e2101989-n/a&rft.artnum=2101989&rft.issn=1613-6810&rft.eissn=1613-6829&rft_id=info:doi/10.1002/smll.202101989&rft_dat=%3Cproquest_cross%3E2592880762%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2592880762&rft_id=info:pmid/34569721&rfr_iscdi=true