Additive Destabilization of Porous Magnesium Borohydride Framework with Core‐Shell Structure
Design of interfaces with thermodynamic and kinetic specificity is of great importance for hydrogen storage from both an applied and fundamental perspective. Here, in order to destabilize the metal hydride and protect the dehydrogenated products from oxidizing, a unique core‐shell structure of porou...
Gespeichert in:
Veröffentlicht in: | Small (Weinheim an der Bergstrasse, Germany) Germany), 2021-11, Vol.17 (44), p.e2101989-n/a, Article 2101989 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 44 |
container_start_page | e2101989 |
container_title | Small (Weinheim an der Bergstrasse, Germany) |
container_volume | 17 |
creator | Dun, Chaochao Jeong, Sohee Liu, Yi‐Sheng Leick, Noemi Mattox, Tracy M. Guo, Jinghua Lee, Joo‐Won Gennett, Thomas Stavila, Vitalie Urban, Jeffrey J. |
description | Design of interfaces with thermodynamic and kinetic specificity is of great importance for hydrogen storage from both an applied and fundamental perspective. Here, in order to destabilize the metal hydride and protect the dehydrogenated products from oxidizing, a unique core‐shell structure of porous Mg(BH4)2‐based framework with a thin layer (no more than 5 nm) of MgCl2 additives on the surface, has been proposed and synthesized via a wet‐chemical method. The local structure and electronic state of the present complex system are systematically investigated to understand the correlation between the distribution of additives and dehydrogenation property of Mg(BH4)2. A significant improvement is achieved for hydrogen desorption with chlorides: initial hydrogen release from MgCl2 decorated γ‐phase Mg(BH4)2 particles commences at 100 °C and reaches a maximum of 9.4 wt% at 385 °C. Besides the decreased decomposition temperature, an activation barrier of about 76.4 kJ mol−1 lower than that of Mg(BH4)2 without MgCl2 is obtained. Moreover, MgCl2 decoration can also prevent the whole decomposed system (both Mg‐ and B‐ elements) from oxidizing, which is a necessary condition to reversibility.
A unique core‐shell structure of porous γ‐phase Mg(BH4)2 with a thin layer of MgCl2 additives on the surface, has been proposed and synthesized via a wet‐chemical method. The initial hydrogen release from MgCl2 decorated Mg(BH4)2 particles commences at 100 °C and reaches a maximum of 9.4 wt% at 385 °C. |
doi_str_mv | 10.1002/smll.202101989 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_smll_202101989</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2592880762</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4079-d3df44f7b4463e6c1097ed03118bf39a39bb802e668d5e74b878cb07a13a86503</originalsourceid><addsrcrecordid>eNqNkU1v1DAQhiMEoh9w5Ygieqx2GduJP44lpbTSViAtXLESZ8K6JHGxHVbLiZ_Ab-SX4GWX5QinGY2ed_TOO1n2jMCcANCXYej7OQVKgCipHmTHhBM245Kqh4eewFF2EsIdACO0EI-zI1aUXAlKjrOPF21ro_2K-SWGWDe2t9_qaN2Yuy5_57ybQn5bfxox2GnIX6XBatN622J-5esB185_ztc2rvLKefz5_cdyhX2fL6OfTJw8PskedXUf8Om-nmYfrl6_r65ni7dvbqqLxcwUINSsZW1XFJ1oioIz5IaAEtgmu0Q2HVM1U00jgSLnsi1RFI0U0jQgasJqyUtgp9mL3V4XotXB2IhmZdw4oomaSEpLJhJ0toPuvfsypXP1nZv8mHxpWioqJQhOEzXfUca7EDx2-t7bofYbTUBvM9fbzPUh8yR4vl87NQO2B_xPyAk43wFrbFyXzOFo8IABAFdKFYKlDra0_H-6svH3tyo3jTFJ1V5qe9z8w7de3i4Wf6_4BRPTr54</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2592880762</pqid></control><display><type>article</type><title>Additive Destabilization of Porous Magnesium Borohydride Framework with Core‐Shell Structure</title><source>MEDLINE</source><source>Access via Wiley Online Library</source><source>Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /></source><creator>Dun, Chaochao ; Jeong, Sohee ; Liu, Yi‐Sheng ; Leick, Noemi ; Mattox, Tracy M. ; Guo, Jinghua ; Lee, Joo‐Won ; Gennett, Thomas ; Stavila, Vitalie ; Urban, Jeffrey J.</creator><creatorcontrib>Dun, Chaochao ; Jeong, Sohee ; Liu, Yi‐Sheng ; Leick, Noemi ; Mattox, Tracy M. ; Guo, Jinghua ; Lee, Joo‐Won ; Gennett, Thomas ; Stavila, Vitalie ; Urban, Jeffrey J.</creatorcontrib><description>Design of interfaces with thermodynamic and kinetic specificity is of great importance for hydrogen storage from both an applied and fundamental perspective. Here, in order to destabilize the metal hydride and protect the dehydrogenated products from oxidizing, a unique core‐shell structure of porous Mg(BH4)2‐based framework with a thin layer (no more than 5 nm) of MgCl2 additives on the surface, has been proposed and synthesized via a wet‐chemical method. The local structure and electronic state of the present complex system are systematically investigated to understand the correlation between the distribution of additives and dehydrogenation property of Mg(BH4)2. A significant improvement is achieved for hydrogen desorption with chlorides: initial hydrogen release from MgCl2 decorated γ‐phase Mg(BH4)2 particles commences at 100 °C and reaches a maximum of 9.4 wt% at 385 °C. Besides the decreased decomposition temperature, an activation barrier of about 76.4 kJ mol−1 lower than that of Mg(BH4)2 without MgCl2 is obtained. Moreover, MgCl2 decoration can also prevent the whole decomposed system (both Mg‐ and B‐ elements) from oxidizing, which is a necessary condition to reversibility.
A unique core‐shell structure of porous γ‐phase Mg(BH4)2 with a thin layer of MgCl2 additives on the surface, has been proposed and synthesized via a wet‐chemical method. The initial hydrogen release from MgCl2 decorated Mg(BH4)2 particles commences at 100 °C and reaches a maximum of 9.4 wt% at 385 °C.</description><identifier>ISSN: 1613-6810</identifier><identifier>EISSN: 1613-6829</identifier><identifier>DOI: 10.1002/smll.202101989</identifier><identifier>PMID: 34569721</identifier><language>eng</language><publisher>WEINHEIM: Wiley</publisher><subject>Additives ; Borohydrides ; Chemical synthesis ; Chemistry ; Chemistry, Multidisciplinary ; Chemistry, Physical ; Complex systems ; Core-shell structure ; Decomposition ; Dehydrogenation ; Destabilization ; Electron states ; Gamma phase ; Hydrogen ; Hydrogen storage ; Magnesium ; Magnesium chloride ; Materials Science ; Materials Science, Multidisciplinary ; Metal hydrides ; Nanoscience & Nanotechnology ; Nanotechnology ; Oxidation ; Physical Sciences ; Physics ; Physics, Applied ; Physics, Condensed Matter ; Porosity ; Science & Technology ; Science & Technology - Other Topics ; Technology ; Thermodynamics</subject><ispartof>Small (Weinheim an der Bergstrasse, Germany), 2021-11, Vol.17 (44), p.e2101989-n/a, Article 2101989</ispartof><rights>2021 Wiley‐VCH GmbH</rights><rights>2021 Wiley-VCH GmbH.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>7</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000699947300001</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c4079-d3df44f7b4463e6c1097ed03118bf39a39bb802e668d5e74b878cb07a13a86503</citedby><cites>FETCH-LOGICAL-c4079-d3df44f7b4463e6c1097ed03118bf39a39bb802e668d5e74b878cb07a13a86503</cites><orcidid>0000-0003-0981-0432 ; 0000-0002-1085-1947 ; 0000-0002-2014-6264 ; 0000-0002-8576-2172 ; 0000-0003-4909-2869 ; 0000-0002-3215-6478 ; 0000-0002-6520-830X ; 0000-0003-1259-6588 ; 0000000312596588 ; 000000026520830X ; 0000000349092869 ; 0000000232156478 ; 0000000210851947 ; 0000000285762172 ; 0000000220146264 ; 0000000309810432</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsmll.202101989$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsmll.202101989$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,315,782,786,887,1419,27933,27934,39267,45583,45584</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34569721$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1822537$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Dun, Chaochao</creatorcontrib><creatorcontrib>Jeong, Sohee</creatorcontrib><creatorcontrib>Liu, Yi‐Sheng</creatorcontrib><creatorcontrib>Leick, Noemi</creatorcontrib><creatorcontrib>Mattox, Tracy M.</creatorcontrib><creatorcontrib>Guo, Jinghua</creatorcontrib><creatorcontrib>Lee, Joo‐Won</creatorcontrib><creatorcontrib>Gennett, Thomas</creatorcontrib><creatorcontrib>Stavila, Vitalie</creatorcontrib><creatorcontrib>Urban, Jeffrey J.</creatorcontrib><title>Additive Destabilization of Porous Magnesium Borohydride Framework with Core‐Shell Structure</title><title>Small (Weinheim an der Bergstrasse, Germany)</title><addtitle>SMALL</addtitle><addtitle>Small</addtitle><description>Design of interfaces with thermodynamic and kinetic specificity is of great importance for hydrogen storage from both an applied and fundamental perspective. Here, in order to destabilize the metal hydride and protect the dehydrogenated products from oxidizing, a unique core‐shell structure of porous Mg(BH4)2‐based framework with a thin layer (no more than 5 nm) of MgCl2 additives on the surface, has been proposed and synthesized via a wet‐chemical method. The local structure and electronic state of the present complex system are systematically investigated to understand the correlation between the distribution of additives and dehydrogenation property of Mg(BH4)2. A significant improvement is achieved for hydrogen desorption with chlorides: initial hydrogen release from MgCl2 decorated γ‐phase Mg(BH4)2 particles commences at 100 °C and reaches a maximum of 9.4 wt% at 385 °C. Besides the decreased decomposition temperature, an activation barrier of about 76.4 kJ mol−1 lower than that of Mg(BH4)2 without MgCl2 is obtained. Moreover, MgCl2 decoration can also prevent the whole decomposed system (both Mg‐ and B‐ elements) from oxidizing, which is a necessary condition to reversibility.
A unique core‐shell structure of porous γ‐phase Mg(BH4)2 with a thin layer of MgCl2 additives on the surface, has been proposed and synthesized via a wet‐chemical method. The initial hydrogen release from MgCl2 decorated Mg(BH4)2 particles commences at 100 °C and reaches a maximum of 9.4 wt% at 385 °C.</description><subject>Additives</subject><subject>Borohydrides</subject><subject>Chemical synthesis</subject><subject>Chemistry</subject><subject>Chemistry, Multidisciplinary</subject><subject>Chemistry, Physical</subject><subject>Complex systems</subject><subject>Core-shell structure</subject><subject>Decomposition</subject><subject>Dehydrogenation</subject><subject>Destabilization</subject><subject>Electron states</subject><subject>Gamma phase</subject><subject>Hydrogen</subject><subject>Hydrogen storage</subject><subject>Magnesium</subject><subject>Magnesium chloride</subject><subject>Materials Science</subject><subject>Materials Science, Multidisciplinary</subject><subject>Metal hydrides</subject><subject>Nanoscience & Nanotechnology</subject><subject>Nanotechnology</subject><subject>Oxidation</subject><subject>Physical Sciences</subject><subject>Physics</subject><subject>Physics, Applied</subject><subject>Physics, Condensed Matter</subject><subject>Porosity</subject><subject>Science & Technology</subject><subject>Science & Technology - Other Topics</subject><subject>Technology</subject><subject>Thermodynamics</subject><issn>1613-6810</issn><issn>1613-6829</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><sourceid>EIF</sourceid><recordid>eNqNkU1v1DAQhiMEoh9w5Ygieqx2GduJP44lpbTSViAtXLESZ8K6JHGxHVbLiZ_Ab-SX4GWX5QinGY2ed_TOO1n2jMCcANCXYej7OQVKgCipHmTHhBM245Kqh4eewFF2EsIdACO0EI-zI1aUXAlKjrOPF21ro_2K-SWGWDe2t9_qaN2Yuy5_57ybQn5bfxox2GnIX6XBatN622J-5esB185_ztc2rvLKefz5_cdyhX2fL6OfTJw8PskedXUf8Om-nmYfrl6_r65ni7dvbqqLxcwUINSsZW1XFJ1oioIz5IaAEtgmu0Q2HVM1U00jgSLnsi1RFI0U0jQgasJqyUtgp9mL3V4XotXB2IhmZdw4oomaSEpLJhJ0toPuvfsypXP1nZv8mHxpWioqJQhOEzXfUca7EDx2-t7bofYbTUBvM9fbzPUh8yR4vl87NQO2B_xPyAk43wFrbFyXzOFo8IABAFdKFYKlDra0_H-6svH3tyo3jTFJ1V5qe9z8w7de3i4Wf6_4BRPTr54</recordid><startdate>20211101</startdate><enddate>20211101</enddate><creator>Dun, Chaochao</creator><creator>Jeong, Sohee</creator><creator>Liu, Yi‐Sheng</creator><creator>Leick, Noemi</creator><creator>Mattox, Tracy M.</creator><creator>Guo, Jinghua</creator><creator>Lee, Joo‐Won</creator><creator>Gennett, Thomas</creator><creator>Stavila, Vitalie</creator><creator>Urban, Jeffrey J.</creator><general>Wiley</general><general>Wiley Subscription Services, Inc</general><general>Wiley Blackwell (John Wiley & Sons)</general><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-0981-0432</orcidid><orcidid>https://orcid.org/0000-0002-1085-1947</orcidid><orcidid>https://orcid.org/0000-0002-2014-6264</orcidid><orcidid>https://orcid.org/0000-0002-8576-2172</orcidid><orcidid>https://orcid.org/0000-0003-4909-2869</orcidid><orcidid>https://orcid.org/0000-0002-3215-6478</orcidid><orcidid>https://orcid.org/0000-0002-6520-830X</orcidid><orcidid>https://orcid.org/0000-0003-1259-6588</orcidid><orcidid>https://orcid.org/0000000312596588</orcidid><orcidid>https://orcid.org/000000026520830X</orcidid><orcidid>https://orcid.org/0000000349092869</orcidid><orcidid>https://orcid.org/0000000232156478</orcidid><orcidid>https://orcid.org/0000000210851947</orcidid><orcidid>https://orcid.org/0000000285762172</orcidid><orcidid>https://orcid.org/0000000220146264</orcidid><orcidid>https://orcid.org/0000000309810432</orcidid></search><sort><creationdate>20211101</creationdate><title>Additive Destabilization of Porous Magnesium Borohydride Framework with Core‐Shell Structure</title><author>Dun, Chaochao ; Jeong, Sohee ; Liu, Yi‐Sheng ; Leick, Noemi ; Mattox, Tracy M. ; Guo, Jinghua ; Lee, Joo‐Won ; Gennett, Thomas ; Stavila, Vitalie ; Urban, Jeffrey J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4079-d3df44f7b4463e6c1097ed03118bf39a39bb802e668d5e74b878cb07a13a86503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Additives</topic><topic>Borohydrides</topic><topic>Chemical synthesis</topic><topic>Chemistry</topic><topic>Chemistry, Multidisciplinary</topic><topic>Chemistry, Physical</topic><topic>Complex systems</topic><topic>Core-shell structure</topic><topic>Decomposition</topic><topic>Dehydrogenation</topic><topic>Destabilization</topic><topic>Electron states</topic><topic>Gamma phase</topic><topic>Hydrogen</topic><topic>Hydrogen storage</topic><topic>Magnesium</topic><topic>Magnesium chloride</topic><topic>Materials Science</topic><topic>Materials Science, Multidisciplinary</topic><topic>Metal hydrides</topic><topic>Nanoscience & Nanotechnology</topic><topic>Nanotechnology</topic><topic>Oxidation</topic><topic>Physical Sciences</topic><topic>Physics</topic><topic>Physics, Applied</topic><topic>Physics, Condensed Matter</topic><topic>Porosity</topic><topic>Science & Technology</topic><topic>Science & Technology - Other Topics</topic><topic>Technology</topic><topic>Thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dun, Chaochao</creatorcontrib><creatorcontrib>Jeong, Sohee</creatorcontrib><creatorcontrib>Liu, Yi‐Sheng</creatorcontrib><creatorcontrib>Leick, Noemi</creatorcontrib><creatorcontrib>Mattox, Tracy M.</creatorcontrib><creatorcontrib>Guo, Jinghua</creatorcontrib><creatorcontrib>Lee, Joo‐Won</creatorcontrib><creatorcontrib>Gennett, Thomas</creatorcontrib><creatorcontrib>Stavila, Vitalie</creatorcontrib><creatorcontrib>Urban, Jeffrey J.</creatorcontrib><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dun, Chaochao</au><au>Jeong, Sohee</au><au>Liu, Yi‐Sheng</au><au>Leick, Noemi</au><au>Mattox, Tracy M.</au><au>Guo, Jinghua</au><au>Lee, Joo‐Won</au><au>Gennett, Thomas</au><au>Stavila, Vitalie</au><au>Urban, Jeffrey J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Additive Destabilization of Porous Magnesium Borohydride Framework with Core‐Shell Structure</atitle><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle><stitle>SMALL</stitle><addtitle>Small</addtitle><date>2021-11-01</date><risdate>2021</risdate><volume>17</volume><issue>44</issue><spage>e2101989</spage><epage>n/a</epage><pages>e2101989-n/a</pages><artnum>2101989</artnum><issn>1613-6810</issn><eissn>1613-6829</eissn><abstract>Design of interfaces with thermodynamic and kinetic specificity is of great importance for hydrogen storage from both an applied and fundamental perspective. Here, in order to destabilize the metal hydride and protect the dehydrogenated products from oxidizing, a unique core‐shell structure of porous Mg(BH4)2‐based framework with a thin layer (no more than 5 nm) of MgCl2 additives on the surface, has been proposed and synthesized via a wet‐chemical method. The local structure and electronic state of the present complex system are systematically investigated to understand the correlation between the distribution of additives and dehydrogenation property of Mg(BH4)2. A significant improvement is achieved for hydrogen desorption with chlorides: initial hydrogen release from MgCl2 decorated γ‐phase Mg(BH4)2 particles commences at 100 °C and reaches a maximum of 9.4 wt% at 385 °C. Besides the decreased decomposition temperature, an activation barrier of about 76.4 kJ mol−1 lower than that of Mg(BH4)2 without MgCl2 is obtained. Moreover, MgCl2 decoration can also prevent the whole decomposed system (both Mg‐ and B‐ elements) from oxidizing, which is a necessary condition to reversibility.
A unique core‐shell structure of porous γ‐phase Mg(BH4)2 with a thin layer of MgCl2 additives on the surface, has been proposed and synthesized via a wet‐chemical method. The initial hydrogen release from MgCl2 decorated Mg(BH4)2 particles commences at 100 °C and reaches a maximum of 9.4 wt% at 385 °C.</abstract><cop>WEINHEIM</cop><pub>Wiley</pub><pmid>34569721</pmid><doi>10.1002/smll.202101989</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-0981-0432</orcidid><orcidid>https://orcid.org/0000-0002-1085-1947</orcidid><orcidid>https://orcid.org/0000-0002-2014-6264</orcidid><orcidid>https://orcid.org/0000-0002-8576-2172</orcidid><orcidid>https://orcid.org/0000-0003-4909-2869</orcidid><orcidid>https://orcid.org/0000-0002-3215-6478</orcidid><orcidid>https://orcid.org/0000-0002-6520-830X</orcidid><orcidid>https://orcid.org/0000-0003-1259-6588</orcidid><orcidid>https://orcid.org/0000000312596588</orcidid><orcidid>https://orcid.org/000000026520830X</orcidid><orcidid>https://orcid.org/0000000349092869</orcidid><orcidid>https://orcid.org/0000000232156478</orcidid><orcidid>https://orcid.org/0000000210851947</orcidid><orcidid>https://orcid.org/0000000285762172</orcidid><orcidid>https://orcid.org/0000000220146264</orcidid><orcidid>https://orcid.org/0000000309810432</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1613-6810 |
ispartof | Small (Weinheim an der Bergstrasse, Germany), 2021-11, Vol.17 (44), p.e2101989-n/a, Article 2101989 |
issn | 1613-6810 1613-6829 |
language | eng |
recordid | cdi_crossref_primary_10_1002_smll_202101989 |
source | MEDLINE; Access via Wiley Online Library; Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /> |
subjects | Additives Borohydrides Chemical synthesis Chemistry Chemistry, Multidisciplinary Chemistry, Physical Complex systems Core-shell structure Decomposition Dehydrogenation Destabilization Electron states Gamma phase Hydrogen Hydrogen storage Magnesium Magnesium chloride Materials Science Materials Science, Multidisciplinary Metal hydrides Nanoscience & Nanotechnology Nanotechnology Oxidation Physical Sciences Physics Physics, Applied Physics, Condensed Matter Porosity Science & Technology Science & Technology - Other Topics Technology Thermodynamics |
title | Additive Destabilization of Porous Magnesium Borohydride Framework with Core‐Shell Structure |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-03T08%3A11%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Additive%20Destabilization%20of%20Porous%20Magnesium%20Borohydride%20Framework%20with%20Core%E2%80%90Shell%20Structure&rft.jtitle=Small%20(Weinheim%20an%20der%20Bergstrasse,%20Germany)&rft.au=Dun,%20Chaochao&rft.date=2021-11-01&rft.volume=17&rft.issue=44&rft.spage=e2101989&rft.epage=n/a&rft.pages=e2101989-n/a&rft.artnum=2101989&rft.issn=1613-6810&rft.eissn=1613-6829&rft_id=info:doi/10.1002/smll.202101989&rft_dat=%3Cproquest_cross%3E2592880762%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2592880762&rft_id=info:pmid/34569721&rfr_iscdi=true |