Construction of rGO‐Encapsulated Co 3 O 4 ‐CoFe 2 O 4 Composites with a Double‐Buffer Structure for High‐Performance Lithium Storage

Transition metal oxides (TMOs) are promising anode materials for next‐generation lithium‐ion batteries (LIBs). Nevertheless, their poor electronic and ionic conductivity as well as huge volume change leads to low capacity release and rapid capacity decay. Herein, a reduced graphene oxide (rGO)‐encap...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Small (Weinheim an der Bergstrasse, Germany) Germany), 2021-08, Vol.17 (34)
Hauptverfasser: Xu, Keqiang, Shen, Xiaoping, Song, Chunsen, Chen, Huaiyang, Chen, Yao, Ji, Zhenyuan, Yuan, Aihua, Yang, Xiuli, Kong, Lirong
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 34
container_start_page
container_title Small (Weinheim an der Bergstrasse, Germany)
container_volume 17
creator Xu, Keqiang
Shen, Xiaoping
Song, Chunsen
Chen, Huaiyang
Chen, Yao
Ji, Zhenyuan
Yuan, Aihua
Yang, Xiuli
Kong, Lirong
description Transition metal oxides (TMOs) are promising anode materials for next‐generation lithium‐ion batteries (LIBs). Nevertheless, their poor electronic and ionic conductivity as well as huge volume change leads to low capacity release and rapid capacity decay. Herein, a reduced graphene oxide (rGO)‐encapsulated TMOs strategy is developed to address the above problems. The Co 3 O 4 ‐CoFe 2 O 4 @rGO composites with rGO sheets‐encapsulated Co 3 O 4 ‐CoFe 2 O 4 microcubes are successfully constructed through a simple metal‐organic frameworks precursor route, in which Co[Fe(CN) 5 NO] microcubes are in situ coated by graphene oxide sheets, followed by a two‐step calcination process. As anode material of LIBs, Co 3 O 4 ‐CoFe 2 O 4 @rGO exhibits remarkable reversible capacity (1393 mAh g −1 at 0.2 A g −1 after 300 cycles), outstanding long‐term cycling stability (701 mAh g −1 at 2.0 A g −1 after 500 cycles), and excellent rate capability (420 mAh g −1 at 4.0 A g −1 ). The superior lithium storage performance can be attributed to the unique double‐buffer structure, in which the outer flexible rGO shells can prevent the structure collapse of the electrode and improve its conductivity, while the hierarchical porous cores of Co 3 O 4 ‐CoFe 2 O 4 microcubes can buffer the volume expansion. This work provides a general and straightforward strategy for the construction of novel rGO‐encapsulated bimetal oxides for energy storage and conversion application.
doi_str_mv 10.1002/smll.202101080
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1002_smll_202101080</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1002_smll_202101080</sourcerecordid><originalsourceid>FETCH-LOGICAL-c840-12e5f4c84a2018d6e78713a946da7bd490ef9ec7668c47af810d5817b8f9f3fb3</originalsourceid><addsrcrecordid>eNo9UEtOwzAUtBBIlMKW9btAin9NnCWEfpAqFYnuIyd5boOSuLITIXYcgAVn7ElwC-rqzWjmjTRDyD2jE0Ypf_Bt00w45YwyqugFGbGYiShWPL08Y0avyY3375QKxmUyIt-Z7XzvhrKvbQfWgFusD18_s67Uez80uscKMgsC1iAhCJmdI_ATy2y7t77u0cNH3e9Aw7MdigaD62kwBh28nYIHh2Csg2W93QXtFV1gre5KhFX4q4c2GK3TW7wlV0Y3Hu_-75hs5rNNtoxW68VL9riKSiVpxDhOjQxQc8pUFWOiEiZ0KuNKJ0UlU4omxTKJY1XKRJtQupoqlhTKpEaYQozJ5C-2dNZ7hybfu7rV7jNnND9OmR-nzM9Til-gemuZ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Construction of rGO‐Encapsulated Co 3 O 4 ‐CoFe 2 O 4 Composites with a Double‐Buffer Structure for High‐Performance Lithium Storage</title><source>Wiley Online Library</source><creator>Xu, Keqiang ; Shen, Xiaoping ; Song, Chunsen ; Chen, Huaiyang ; Chen, Yao ; Ji, Zhenyuan ; Yuan, Aihua ; Yang, Xiuli ; Kong, Lirong</creator><creatorcontrib>Xu, Keqiang ; Shen, Xiaoping ; Song, Chunsen ; Chen, Huaiyang ; Chen, Yao ; Ji, Zhenyuan ; Yuan, Aihua ; Yang, Xiuli ; Kong, Lirong</creatorcontrib><description>Transition metal oxides (TMOs) are promising anode materials for next‐generation lithium‐ion batteries (LIBs). Nevertheless, their poor electronic and ionic conductivity as well as huge volume change leads to low capacity release and rapid capacity decay. Herein, a reduced graphene oxide (rGO)‐encapsulated TMOs strategy is developed to address the above problems. The Co 3 O 4 ‐CoFe 2 O 4 @rGO composites with rGO sheets‐encapsulated Co 3 O 4 ‐CoFe 2 O 4 microcubes are successfully constructed through a simple metal‐organic frameworks precursor route, in which Co[Fe(CN) 5 NO] microcubes are in situ coated by graphene oxide sheets, followed by a two‐step calcination process. As anode material of LIBs, Co 3 O 4 ‐CoFe 2 O 4 @rGO exhibits remarkable reversible capacity (1393 mAh g −1 at 0.2 A g −1 after 300 cycles), outstanding long‐term cycling stability (701 mAh g −1 at 2.0 A g −1 after 500 cycles), and excellent rate capability (420 mAh g −1 at 4.0 A g −1 ). The superior lithium storage performance can be attributed to the unique double‐buffer structure, in which the outer flexible rGO shells can prevent the structure collapse of the electrode and improve its conductivity, while the hierarchical porous cores of Co 3 O 4 ‐CoFe 2 O 4 microcubes can buffer the volume expansion. This work provides a general and straightforward strategy for the construction of novel rGO‐encapsulated bimetal oxides for energy storage and conversion application.</description><identifier>ISSN: 1613-6810</identifier><identifier>EISSN: 1613-6829</identifier><identifier>DOI: 10.1002/smll.202101080</identifier><language>eng</language><ispartof>Small (Weinheim an der Bergstrasse, Germany), 2021-08, Vol.17 (34)</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c840-12e5f4c84a2018d6e78713a946da7bd490ef9ec7668c47af810d5817b8f9f3fb3</citedby><cites>FETCH-LOGICAL-c840-12e5f4c84a2018d6e78713a946da7bd490ef9ec7668c47af810d5817b8f9f3fb3</cites><orcidid>0000-0003-0366-6433</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Xu, Keqiang</creatorcontrib><creatorcontrib>Shen, Xiaoping</creatorcontrib><creatorcontrib>Song, Chunsen</creatorcontrib><creatorcontrib>Chen, Huaiyang</creatorcontrib><creatorcontrib>Chen, Yao</creatorcontrib><creatorcontrib>Ji, Zhenyuan</creatorcontrib><creatorcontrib>Yuan, Aihua</creatorcontrib><creatorcontrib>Yang, Xiuli</creatorcontrib><creatorcontrib>Kong, Lirong</creatorcontrib><title>Construction of rGO‐Encapsulated Co 3 O 4 ‐CoFe 2 O 4 Composites with a Double‐Buffer Structure for High‐Performance Lithium Storage</title><title>Small (Weinheim an der Bergstrasse, Germany)</title><description>Transition metal oxides (TMOs) are promising anode materials for next‐generation lithium‐ion batteries (LIBs). Nevertheless, their poor electronic and ionic conductivity as well as huge volume change leads to low capacity release and rapid capacity decay. Herein, a reduced graphene oxide (rGO)‐encapsulated TMOs strategy is developed to address the above problems. The Co 3 O 4 ‐CoFe 2 O 4 @rGO composites with rGO sheets‐encapsulated Co 3 O 4 ‐CoFe 2 O 4 microcubes are successfully constructed through a simple metal‐organic frameworks precursor route, in which Co[Fe(CN) 5 NO] microcubes are in situ coated by graphene oxide sheets, followed by a two‐step calcination process. As anode material of LIBs, Co 3 O 4 ‐CoFe 2 O 4 @rGO exhibits remarkable reversible capacity (1393 mAh g −1 at 0.2 A g −1 after 300 cycles), outstanding long‐term cycling stability (701 mAh g −1 at 2.0 A g −1 after 500 cycles), and excellent rate capability (420 mAh g −1 at 4.0 A g −1 ). The superior lithium storage performance can be attributed to the unique double‐buffer structure, in which the outer flexible rGO shells can prevent the structure collapse of the electrode and improve its conductivity, while the hierarchical porous cores of Co 3 O 4 ‐CoFe 2 O 4 microcubes can buffer the volume expansion. This work provides a general and straightforward strategy for the construction of novel rGO‐encapsulated bimetal oxides for energy storage and conversion application.</description><issn>1613-6810</issn><issn>1613-6829</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNo9UEtOwzAUtBBIlMKW9btAin9NnCWEfpAqFYnuIyd5boOSuLITIXYcgAVn7ElwC-rqzWjmjTRDyD2jE0Ypf_Bt00w45YwyqugFGbGYiShWPL08Y0avyY3375QKxmUyIt-Z7XzvhrKvbQfWgFusD18_s67Uez80uscKMgsC1iAhCJmdI_ATy2y7t77u0cNH3e9Aw7MdigaD62kwBh28nYIHh2Csg2W93QXtFV1gre5KhFX4q4c2GK3TW7wlV0Y3Hu_-75hs5rNNtoxW68VL9riKSiVpxDhOjQxQc8pUFWOiEiZ0KuNKJ0UlU4omxTKJY1XKRJtQupoqlhTKpEaYQozJ5C-2dNZ7hybfu7rV7jNnND9OmR-nzM9Til-gemuZ</recordid><startdate>202108</startdate><enddate>202108</enddate><creator>Xu, Keqiang</creator><creator>Shen, Xiaoping</creator><creator>Song, Chunsen</creator><creator>Chen, Huaiyang</creator><creator>Chen, Yao</creator><creator>Ji, Zhenyuan</creator><creator>Yuan, Aihua</creator><creator>Yang, Xiuli</creator><creator>Kong, Lirong</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-0366-6433</orcidid></search><sort><creationdate>202108</creationdate><title>Construction of rGO‐Encapsulated Co 3 O 4 ‐CoFe 2 O 4 Composites with a Double‐Buffer Structure for High‐Performance Lithium Storage</title><author>Xu, Keqiang ; Shen, Xiaoping ; Song, Chunsen ; Chen, Huaiyang ; Chen, Yao ; Ji, Zhenyuan ; Yuan, Aihua ; Yang, Xiuli ; Kong, Lirong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c840-12e5f4c84a2018d6e78713a946da7bd490ef9ec7668c47af810d5817b8f9f3fb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Keqiang</creatorcontrib><creatorcontrib>Shen, Xiaoping</creatorcontrib><creatorcontrib>Song, Chunsen</creatorcontrib><creatorcontrib>Chen, Huaiyang</creatorcontrib><creatorcontrib>Chen, Yao</creatorcontrib><creatorcontrib>Ji, Zhenyuan</creatorcontrib><creatorcontrib>Yuan, Aihua</creatorcontrib><creatorcontrib>Yang, Xiuli</creatorcontrib><creatorcontrib>Kong, Lirong</creatorcontrib><collection>CrossRef</collection><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Keqiang</au><au>Shen, Xiaoping</au><au>Song, Chunsen</au><au>Chen, Huaiyang</au><au>Chen, Yao</au><au>Ji, Zhenyuan</au><au>Yuan, Aihua</au><au>Yang, Xiuli</au><au>Kong, Lirong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Construction of rGO‐Encapsulated Co 3 O 4 ‐CoFe 2 O 4 Composites with a Double‐Buffer Structure for High‐Performance Lithium Storage</atitle><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle><date>2021-08</date><risdate>2021</risdate><volume>17</volume><issue>34</issue><issn>1613-6810</issn><eissn>1613-6829</eissn><abstract>Transition metal oxides (TMOs) are promising anode materials for next‐generation lithium‐ion batteries (LIBs). Nevertheless, their poor electronic and ionic conductivity as well as huge volume change leads to low capacity release and rapid capacity decay. Herein, a reduced graphene oxide (rGO)‐encapsulated TMOs strategy is developed to address the above problems. The Co 3 O 4 ‐CoFe 2 O 4 @rGO composites with rGO sheets‐encapsulated Co 3 O 4 ‐CoFe 2 O 4 microcubes are successfully constructed through a simple metal‐organic frameworks precursor route, in which Co[Fe(CN) 5 NO] microcubes are in situ coated by graphene oxide sheets, followed by a two‐step calcination process. As anode material of LIBs, Co 3 O 4 ‐CoFe 2 O 4 @rGO exhibits remarkable reversible capacity (1393 mAh g −1 at 0.2 A g −1 after 300 cycles), outstanding long‐term cycling stability (701 mAh g −1 at 2.0 A g −1 after 500 cycles), and excellent rate capability (420 mAh g −1 at 4.0 A g −1 ). The superior lithium storage performance can be attributed to the unique double‐buffer structure, in which the outer flexible rGO shells can prevent the structure collapse of the electrode and improve its conductivity, while the hierarchical porous cores of Co 3 O 4 ‐CoFe 2 O 4 microcubes can buffer the volume expansion. This work provides a general and straightforward strategy for the construction of novel rGO‐encapsulated bimetal oxides for energy storage and conversion application.</abstract><doi>10.1002/smll.202101080</doi><orcidid>https://orcid.org/0000-0003-0366-6433</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1613-6810
ispartof Small (Weinheim an der Bergstrasse, Germany), 2021-08, Vol.17 (34)
issn 1613-6810
1613-6829
language eng
recordid cdi_crossref_primary_10_1002_smll_202101080
source Wiley Online Library
title Construction of rGO‐Encapsulated Co 3 O 4 ‐CoFe 2 O 4 Composites with a Double‐Buffer Structure for High‐Performance Lithium Storage
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T12%3A00%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Construction%20of%20rGO%E2%80%90Encapsulated%20Co%203%20O%204%20%E2%80%90CoFe%202%20O%204%20Composites%20with%20a%20Double%E2%80%90Buffer%20Structure%20for%20High%E2%80%90Performance%20Lithium%20Storage&rft.jtitle=Small%20(Weinheim%20an%20der%20Bergstrasse,%20Germany)&rft.au=Xu,%20Keqiang&rft.date=2021-08&rft.volume=17&rft.issue=34&rft.issn=1613-6810&rft.eissn=1613-6829&rft_id=info:doi/10.1002/smll.202101080&rft_dat=%3Ccrossref%3E10_1002_smll_202101080%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true