The CO 2 Reduction Reaction Mechanism on Silicene Nanoflakes. A Theoretical Perspective

From density functional theory calculations, we elucidated the reaction mechanism of CO 2 reduction on silicene nanoflakes. According to the results, silicene monoflakes present a notable catalytic activity for the hydrogenation of CO 2 . The most probable energetically favorable reaction pathway is...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ChemistrySelect (Weinheim) 2023-02, Vol.8 (7)
Hauptverfasser: Vallejo Narváez, Wilmer E., de la Garza, Cesar Gabriel Vera, Rodríguez, Luis Daniel Solís, Fomine, Serguei
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 7
container_start_page
container_title ChemistrySelect (Weinheim)
container_volume 8
creator Vallejo Narváez, Wilmer E.
de la Garza, Cesar Gabriel Vera
Rodríguez, Luis Daniel Solís
Fomine, Serguei
description From density functional theory calculations, we elucidated the reaction mechanism of CO 2 reduction on silicene nanoflakes. According to the results, silicene monoflakes present a notable catalytic activity for the hydrogenation of CO 2 . The most probable energetically favorable reaction pathway is formic acid and formaldehyde production, with energy barriers ranging between 16 and 24.1 kcal/mol. At the same time, transforming carbon dioxide to methanol, carbon monoxide, and methane requires higher activation energies. This theoretical perspective provides significant insights into silicene‐based materials and their potential applications as CO 2 conversion to fuel and value‐added chemicals.
doi_str_mv 10.1002/slct.202203484
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1002_slct_202203484</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1002_slct_202203484</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1244-96551484e1fbd0a8bcfe3af00725ee44c5f8b4a5aec849b7945b7e63d310b43c3</originalsourceid><addsrcrecordid>eNpNkEtLw0AUhQdRsNRuXc8fSLzzTLIswRdUK1pxGWYmd-hompSZKPjvTamIq_vdxTkcPkIuGeQMgF-lzo05B85ByFKekBkXWmVayer0H5-TRUrvAMB0qbkqZuRts0Varymnz9h-ujEM_UTmCA_otqYPaUen5yV0wWGP9NH0g-_MB6acLumUHyKOwZmOPmFMe5yyX3hBzrzpEi5-75y83lxv6rtstb69r5erzDEuZVZppdg0GJm3LZjSOo_CeICCK0QpnfKllUYZdKWsbFFJZQvUohUMrBROzEl-7HVxSCmib_Yx7Ez8bhg0BzPNwUzzZ0b8APP8Vro</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The CO 2 Reduction Reaction Mechanism on Silicene Nanoflakes. A Theoretical Perspective</title><source>Wiley Online Library All Journals</source><creator>Vallejo Narváez, Wilmer E. ; de la Garza, Cesar Gabriel Vera ; Rodríguez, Luis Daniel Solís ; Fomine, Serguei</creator><creatorcontrib>Vallejo Narváez, Wilmer E. ; de la Garza, Cesar Gabriel Vera ; Rodríguez, Luis Daniel Solís ; Fomine, Serguei</creatorcontrib><description>From density functional theory calculations, we elucidated the reaction mechanism of CO 2 reduction on silicene nanoflakes. According to the results, silicene monoflakes present a notable catalytic activity for the hydrogenation of CO 2 . The most probable energetically favorable reaction pathway is formic acid and formaldehyde production, with energy barriers ranging between 16 and 24.1 kcal/mol. At the same time, transforming carbon dioxide to methanol, carbon monoxide, and methane requires higher activation energies. This theoretical perspective provides significant insights into silicene‐based materials and their potential applications as CO 2 conversion to fuel and value‐added chemicals.</description><identifier>ISSN: 2365-6549</identifier><identifier>EISSN: 2365-6549</identifier><identifier>DOI: 10.1002/slct.202203484</identifier><language>eng</language><ispartof>ChemistrySelect (Weinheim), 2023-02, Vol.8 (7)</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1244-96551484e1fbd0a8bcfe3af00725ee44c5f8b4a5aec849b7945b7e63d310b43c3</citedby><cites>FETCH-LOGICAL-c1244-96551484e1fbd0a8bcfe3af00725ee44c5f8b4a5aec849b7945b7e63d310b43c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Vallejo Narváez, Wilmer E.</creatorcontrib><creatorcontrib>de la Garza, Cesar Gabriel Vera</creatorcontrib><creatorcontrib>Rodríguez, Luis Daniel Solís</creatorcontrib><creatorcontrib>Fomine, Serguei</creatorcontrib><title>The CO 2 Reduction Reaction Mechanism on Silicene Nanoflakes. A Theoretical Perspective</title><title>ChemistrySelect (Weinheim)</title><description>From density functional theory calculations, we elucidated the reaction mechanism of CO 2 reduction on silicene nanoflakes. According to the results, silicene monoflakes present a notable catalytic activity for the hydrogenation of CO 2 . The most probable energetically favorable reaction pathway is formic acid and formaldehyde production, with energy barriers ranging between 16 and 24.1 kcal/mol. At the same time, transforming carbon dioxide to methanol, carbon monoxide, and methane requires higher activation energies. This theoretical perspective provides significant insights into silicene‐based materials and their potential applications as CO 2 conversion to fuel and value‐added chemicals.</description><issn>2365-6549</issn><issn>2365-6549</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpNkEtLw0AUhQdRsNRuXc8fSLzzTLIswRdUK1pxGWYmd-hompSZKPjvTamIq_vdxTkcPkIuGeQMgF-lzo05B85ByFKekBkXWmVayer0H5-TRUrvAMB0qbkqZuRts0Varymnz9h-ujEM_UTmCA_otqYPaUen5yV0wWGP9NH0g-_MB6acLumUHyKOwZmOPmFMe5yyX3hBzrzpEi5-75y83lxv6rtstb69r5erzDEuZVZppdg0GJm3LZjSOo_CeICCK0QpnfKllUYZdKWsbFFJZQvUohUMrBROzEl-7HVxSCmib_Yx7Ez8bhg0BzPNwUzzZ0b8APP8Vro</recordid><startdate>20230216</startdate><enddate>20230216</enddate><creator>Vallejo Narváez, Wilmer E.</creator><creator>de la Garza, Cesar Gabriel Vera</creator><creator>Rodríguez, Luis Daniel Solís</creator><creator>Fomine, Serguei</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20230216</creationdate><title>The CO 2 Reduction Reaction Mechanism on Silicene Nanoflakes. A Theoretical Perspective</title><author>Vallejo Narváez, Wilmer E. ; de la Garza, Cesar Gabriel Vera ; Rodríguez, Luis Daniel Solís ; Fomine, Serguei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1244-96551484e1fbd0a8bcfe3af00725ee44c5f8b4a5aec849b7945b7e63d310b43c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vallejo Narváez, Wilmer E.</creatorcontrib><creatorcontrib>de la Garza, Cesar Gabriel Vera</creatorcontrib><creatorcontrib>Rodríguez, Luis Daniel Solís</creatorcontrib><creatorcontrib>Fomine, Serguei</creatorcontrib><collection>CrossRef</collection><jtitle>ChemistrySelect (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vallejo Narváez, Wilmer E.</au><au>de la Garza, Cesar Gabriel Vera</au><au>Rodríguez, Luis Daniel Solís</au><au>Fomine, Serguei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The CO 2 Reduction Reaction Mechanism on Silicene Nanoflakes. A Theoretical Perspective</atitle><jtitle>ChemistrySelect (Weinheim)</jtitle><date>2023-02-16</date><risdate>2023</risdate><volume>8</volume><issue>7</issue><issn>2365-6549</issn><eissn>2365-6549</eissn><abstract>From density functional theory calculations, we elucidated the reaction mechanism of CO 2 reduction on silicene nanoflakes. According to the results, silicene monoflakes present a notable catalytic activity for the hydrogenation of CO 2 . The most probable energetically favorable reaction pathway is formic acid and formaldehyde production, with energy barriers ranging between 16 and 24.1 kcal/mol. At the same time, transforming carbon dioxide to methanol, carbon monoxide, and methane requires higher activation energies. This theoretical perspective provides significant insights into silicene‐based materials and their potential applications as CO 2 conversion to fuel and value‐added chemicals.</abstract><doi>10.1002/slct.202203484</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2365-6549
ispartof ChemistrySelect (Weinheim), 2023-02, Vol.8 (7)
issn 2365-6549
2365-6549
language eng
recordid cdi_crossref_primary_10_1002_slct_202203484
source Wiley Online Library All Journals
title The CO 2 Reduction Reaction Mechanism on Silicene Nanoflakes. A Theoretical Perspective
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T14%3A19%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20CO%202%20Reduction%20Reaction%20Mechanism%20on%20Silicene%20Nanoflakes.%20A%20Theoretical%20Perspective&rft.jtitle=ChemistrySelect%20(Weinheim)&rft.au=Vallejo%20Narv%C3%A1ez,%20Wilmer%20E.&rft.date=2023-02-16&rft.volume=8&rft.issue=7&rft.issn=2365-6549&rft.eissn=2365-6549&rft_id=info:doi/10.1002/slct.202203484&rft_dat=%3Ccrossref%3E10_1002_slct_202203484%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true