Prediction of Arsenic Concentration in Water Samples Using Digital Imaging Colorimetry and Multi‐Variable Regression

Arsenic is perhaps the most harmful components and may be found in drinking water. In this work, a convenient and low‐cost gadget is designed and connected to smartphone to predict arsenic concentration. The smartphone captures the images of color change and analyzes data in RGB color space. The col...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ChemistrySelect (Weinheim) 2022-08, Vol.7 (31), p.n/a
Hauptverfasser: Sajed, Samira, Kolahdouz, Mohammadreza, Sadeghi, Mohammad Amin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 31
container_start_page
container_title ChemistrySelect (Weinheim)
container_volume 7
creator Sajed, Samira
Kolahdouz, Mohammadreza
Sadeghi, Mohammad Amin
description Arsenic is perhaps the most harmful components and may be found in drinking water. In this work, a convenient and low‐cost gadget is designed and connected to smartphone to predict arsenic concentration. The smartphone captures the images of color change and analyzes data in RGB color space. The color change is the result of functionalized gold nanoparticle aggregations in the presence of arsenic ions. By implementing a multi‐variable regression model, the captured data is converted into the arsenic concentration values. Under optimum analytical conditions, the proposed algorithm provides better detection limit and linearity as compared to other studies. The nanoprobe has high sensitivity to arsenic, with detection limit of 0.45 ppb at the linear range of 1–7500 ppb and a mean squared error of 0.24. The quantitative results agreed with those obtained by the reference ICP‐MS method at a 94 % confidence level and can be used for on‐site detection of low‐content arsenic ions. A rapid, convenient and low‐cost gadget is designed and connected to smartphone for on‐site monitoring of arsenic concentration. The RGB analysis and multi‐variable regression method allowed detection of arsenic at nanoscale (0.45 ppb) and improved linear range (1‐7500 ppb) of the sensor. Environmental conditions such as pH and temperature effects have been carefully studied and reported to ensure optimum sensor performance.
doi_str_mv 10.1002/slct.202201376
format Article
fullrecord <record><control><sourceid>wiley_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_slct_202201376</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>SLCT202201376</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2196-459ee241c5ab36fe265f6a9a85d964f97fc30a588ea1234c106ea593e7575ccf3</originalsourceid><addsrcrecordid>eNqFkE1OwzAQRi0EElXplrUvkGI7sRMvq_BXqQhEW1hGU3ccGblJZQdQdxyBM3ISWoqAHauZ0cz7NHqEnHI25IyJs-hNNxRMCMbTXB2QnkiVTJTM9OGf_pgMYnxijHFVKCHzHnm5C7h0pnNtQ1tLRyFi4wwt28Zg0wX4WriGPkKHgU5htfYY6Ty6pqbnrnYdeDpeQb2by9a3wa2wCxsKzZLePPvOfby9P0BwsPBI77EOGOM28oQcWfARB9-1T-aXF7PyOpncXo3L0SQxgmuVZFIjiowbCYtUWRRKWgUaCrnUKrM6tyZlIIsCgYs0M5wpBKlTzGUujbFpnwz3uSa0MQa01Xr7IYRNxVm1E1ftxFU_4raA3gOvzuPmn-tqOilnv-wnZ-x1VA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Prediction of Arsenic Concentration in Water Samples Using Digital Imaging Colorimetry and Multi‐Variable Regression</title><source>Wiley Online Library All Journals</source><creator>Sajed, Samira ; Kolahdouz, Mohammadreza ; Sadeghi, Mohammad Amin</creator><creatorcontrib>Sajed, Samira ; Kolahdouz, Mohammadreza ; Sadeghi, Mohammad Amin</creatorcontrib><description>Arsenic is perhaps the most harmful components and may be found in drinking water. In this work, a convenient and low‐cost gadget is designed and connected to smartphone to predict arsenic concentration. The smartphone captures the images of color change and analyzes data in RGB color space. The color change is the result of functionalized gold nanoparticle aggregations in the presence of arsenic ions. By implementing a multi‐variable regression model, the captured data is converted into the arsenic concentration values. Under optimum analytical conditions, the proposed algorithm provides better detection limit and linearity as compared to other studies. The nanoprobe has high sensitivity to arsenic, with detection limit of 0.45 ppb at the linear range of 1–7500 ppb and a mean squared error of 0.24. The quantitative results agreed with those obtained by the reference ICP‐MS method at a 94 % confidence level and can be used for on‐site detection of low‐content arsenic ions. A rapid, convenient and low‐cost gadget is designed and connected to smartphone for on‐site monitoring of arsenic concentration. The RGB analysis and multi‐variable regression method allowed detection of arsenic at nanoscale (0.45 ppb) and improved linear range (1‐7500 ppb) of the sensor. Environmental conditions such as pH and temperature effects have been carefully studied and reported to ensure optimum sensor performance.</description><identifier>ISSN: 2365-6549</identifier><identifier>EISSN: 2365-6549</identifier><identifier>DOI: 10.1002/slct.202201376</identifier><language>eng</language><subject>arsenic ; colloids ; multi-variable regression ; RGB digital images ; smartphone</subject><ispartof>ChemistrySelect (Weinheim), 2022-08, Vol.7 (31), p.n/a</ispartof><rights>2022 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2196-459ee241c5ab36fe265f6a9a85d964f97fc30a588ea1234c106ea593e7575ccf3</citedby><cites>FETCH-LOGICAL-c2196-459ee241c5ab36fe265f6a9a85d964f97fc30a588ea1234c106ea593e7575ccf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fslct.202201376$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fslct.202201376$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27923,27924,45573,45574</link.rule.ids></links><search><creatorcontrib>Sajed, Samira</creatorcontrib><creatorcontrib>Kolahdouz, Mohammadreza</creatorcontrib><creatorcontrib>Sadeghi, Mohammad Amin</creatorcontrib><title>Prediction of Arsenic Concentration in Water Samples Using Digital Imaging Colorimetry and Multi‐Variable Regression</title><title>ChemistrySelect (Weinheim)</title><description>Arsenic is perhaps the most harmful components and may be found in drinking water. In this work, a convenient and low‐cost gadget is designed and connected to smartphone to predict arsenic concentration. The smartphone captures the images of color change and analyzes data in RGB color space. The color change is the result of functionalized gold nanoparticle aggregations in the presence of arsenic ions. By implementing a multi‐variable regression model, the captured data is converted into the arsenic concentration values. Under optimum analytical conditions, the proposed algorithm provides better detection limit and linearity as compared to other studies. The nanoprobe has high sensitivity to arsenic, with detection limit of 0.45 ppb at the linear range of 1–7500 ppb and a mean squared error of 0.24. The quantitative results agreed with those obtained by the reference ICP‐MS method at a 94 % confidence level and can be used for on‐site detection of low‐content arsenic ions. A rapid, convenient and low‐cost gadget is designed and connected to smartphone for on‐site monitoring of arsenic concentration. The RGB analysis and multi‐variable regression method allowed detection of arsenic at nanoscale (0.45 ppb) and improved linear range (1‐7500 ppb) of the sensor. Environmental conditions such as pH and temperature effects have been carefully studied and reported to ensure optimum sensor performance.</description><subject>arsenic</subject><subject>colloids</subject><subject>multi-variable regression</subject><subject>RGB digital images</subject><subject>smartphone</subject><issn>2365-6549</issn><issn>2365-6549</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFkE1OwzAQRi0EElXplrUvkGI7sRMvq_BXqQhEW1hGU3ccGblJZQdQdxyBM3ISWoqAHauZ0cz7NHqEnHI25IyJs-hNNxRMCMbTXB2QnkiVTJTM9OGf_pgMYnxijHFVKCHzHnm5C7h0pnNtQ1tLRyFi4wwt28Zg0wX4WriGPkKHgU5htfYY6Ty6pqbnrnYdeDpeQb2by9a3wa2wCxsKzZLePPvOfby9P0BwsPBI77EOGOM28oQcWfARB9-1T-aXF7PyOpncXo3L0SQxgmuVZFIjiowbCYtUWRRKWgUaCrnUKrM6tyZlIIsCgYs0M5wpBKlTzGUujbFpnwz3uSa0MQa01Xr7IYRNxVm1E1ftxFU_4raA3gOvzuPmn-tqOilnv-wnZ-x1VA</recordid><startdate>20220819</startdate><enddate>20220819</enddate><creator>Sajed, Samira</creator><creator>Kolahdouz, Mohammadreza</creator><creator>Sadeghi, Mohammad Amin</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20220819</creationdate><title>Prediction of Arsenic Concentration in Water Samples Using Digital Imaging Colorimetry and Multi‐Variable Regression</title><author>Sajed, Samira ; Kolahdouz, Mohammadreza ; Sadeghi, Mohammad Amin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2196-459ee241c5ab36fe265f6a9a85d964f97fc30a588ea1234c106ea593e7575ccf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>arsenic</topic><topic>colloids</topic><topic>multi-variable regression</topic><topic>RGB digital images</topic><topic>smartphone</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sajed, Samira</creatorcontrib><creatorcontrib>Kolahdouz, Mohammadreza</creatorcontrib><creatorcontrib>Sadeghi, Mohammad Amin</creatorcontrib><collection>CrossRef</collection><jtitle>ChemistrySelect (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sajed, Samira</au><au>Kolahdouz, Mohammadreza</au><au>Sadeghi, Mohammad Amin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Prediction of Arsenic Concentration in Water Samples Using Digital Imaging Colorimetry and Multi‐Variable Regression</atitle><jtitle>ChemistrySelect (Weinheim)</jtitle><date>2022-08-19</date><risdate>2022</risdate><volume>7</volume><issue>31</issue><epage>n/a</epage><issn>2365-6549</issn><eissn>2365-6549</eissn><abstract>Arsenic is perhaps the most harmful components and may be found in drinking water. In this work, a convenient and low‐cost gadget is designed and connected to smartphone to predict arsenic concentration. The smartphone captures the images of color change and analyzes data in RGB color space. The color change is the result of functionalized gold nanoparticle aggregations in the presence of arsenic ions. By implementing a multi‐variable regression model, the captured data is converted into the arsenic concentration values. Under optimum analytical conditions, the proposed algorithm provides better detection limit and linearity as compared to other studies. The nanoprobe has high sensitivity to arsenic, with detection limit of 0.45 ppb at the linear range of 1–7500 ppb and a mean squared error of 0.24. The quantitative results agreed with those obtained by the reference ICP‐MS method at a 94 % confidence level and can be used for on‐site detection of low‐content arsenic ions. A rapid, convenient and low‐cost gadget is designed and connected to smartphone for on‐site monitoring of arsenic concentration. The RGB analysis and multi‐variable regression method allowed detection of arsenic at nanoscale (0.45 ppb) and improved linear range (1‐7500 ppb) of the sensor. Environmental conditions such as pH and temperature effects have been carefully studied and reported to ensure optimum sensor performance.</abstract><doi>10.1002/slct.202201376</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2365-6549
ispartof ChemistrySelect (Weinheim), 2022-08, Vol.7 (31), p.n/a
issn 2365-6549
2365-6549
language eng
recordid cdi_crossref_primary_10_1002_slct_202201376
source Wiley Online Library All Journals
subjects arsenic
colloids
multi-variable regression
RGB digital images
smartphone
title Prediction of Arsenic Concentration in Water Samples Using Digital Imaging Colorimetry and Multi‐Variable Regression
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T15%3A50%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Prediction%20of%20Arsenic%20Concentration%20in%20Water%20Samples%20Using%20Digital%20Imaging%20Colorimetry%20and%20Multi%E2%80%90Variable%20Regression&rft.jtitle=ChemistrySelect%20(Weinheim)&rft.au=Sajed,%20Samira&rft.date=2022-08-19&rft.volume=7&rft.issue=31&rft.epage=n/a&rft.issn=2365-6549&rft.eissn=2365-6549&rft_id=info:doi/10.1002/slct.202201376&rft_dat=%3Cwiley_cross%3ESLCT202201376%3C/wiley_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true