Two Synthesis Methods for Fe(III)@MOF‐5‐derived Porous Carbon Composites for Enhanced Phenol Hydroxylation

MOF‐5‐derived porous carbon (MDPC) materials, MDPC‐600 and MDPC‐1000, were prepared by pyrolysis at 600 °C in nitrogen atmosphere prior to acid treatment and at 1000 °C in nitrogen atmosphere, respectively. The samples were characterized by X‐ray diffraction (XRD), Brunauer–Emmett–Teller (BET), scan...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ChemistrySelect (Weinheim) 2019-12, Vol.4 (46), p.13638-13645
Hauptverfasser: Xiang, Bai‐lin, Fu, Lin, Li, Yongfei, Liu, Yuejin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 13645
container_issue 46
container_start_page 13638
container_title ChemistrySelect (Weinheim)
container_volume 4
creator Xiang, Bai‐lin
Fu, Lin
Li, Yongfei
Liu, Yuejin
description MOF‐5‐derived porous carbon (MDPC) materials, MDPC‐600 and MDPC‐1000, were prepared by pyrolysis at 600 °C in nitrogen atmosphere prior to acid treatment and at 1000 °C in nitrogen atmosphere, respectively. The samples were characterized by X‐ray diffraction (XRD), Brunauer–Emmett–Teller (BET), scanning electron microscopy (SEM), X–MaxN energy spectrum, and transmission electron microscopy (TEM). The test results of MDPC‐1000 and MDPC‐600 show that both are microporous amorphous carbon with the 2.7 nm diameter pore size, indicating that the micropore of MOF‐5 is well preserved during pyrolysis. MDPC‐1000 and MDPC‐600 have specific surface areas of 1570.9 m2/g and 1029.5 m2/g, respectively. MDPC‐1000 and MDPC‐600 were loaded with Fe ions to prepare Fe(III)/MDPC composite materials, which were used as catalysts for phenol hydroxylation. The results show that Fe(III)/MDPC‐1000 has higher catalytic effect than Fe(III)/MDPC‐600. During one hour phenol hydroxylation at 80 °C with 3 wt.% Fe concentration and a mass ratio of catalyst to phenol of 0.053, Fe(III)/MDPC‐1000 provides maximum phenol conversion, dihydroxybenzene yield, and dihydroxybenzene selectivity of 61.4%, 54.3%, and 88.4%, respectively. Two methods synthesis of MOF‐5‐derived porous carbon (MDPC) and load Fe3+ for phenol hydroxylation, and 88.4% selectivity for dihydroxybenzene and 54.3% yield of dihydroxybenzene were obtained in hydroxylation of phenol with H2O2 over Fe(III)/MDPC‐1000 catalyst.
doi_str_mv 10.1002/slct.201902941
format Article
fullrecord <record><control><sourceid>wiley_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_slct_201902941</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>SLCT201902941</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2891-dc3a96e8ade17b6cabf6c0daac3a33def3c719174abdc3052d2a7bcb3c6c85ea3</originalsourceid><addsrcrecordid>eNqFkL1OwzAURi0EElXpyuwRhhT_NE68gaKWRmpVpJY5cuwbJSiNKztQsvUReEaehFRFwMZwda8-fecOB6FrSsaUEHbna92OGaGSMDmhZ2jAuAgDEU7k-Z_7Eo28fyGEUBELFkYD1Gz2Fq-7pi3BVx4voS2t8biwDs_gJk3T2_vlavZ5-Aj7MeCqNzD4yTr76nGiXG4bnNjtzvqqhRM2bUrV6GOrhMbWeN4ZZ9-7WrWVba7QRaFqD6PvPUTPs-kmmQeL1WOaPCwCzWJJA6O5kgJiZYBGudAqL4QmRqk-59xAwXVEJY0mKu-rJGSGqSjXOddCxyEoPkTj01_trPcOimznqq1yXUZJdhSWHYVlP8J6QJ6AfVVD9087Wy-SzS_7BSt_dBM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Two Synthesis Methods for Fe(III)@MOF‐5‐derived Porous Carbon Composites for Enhanced Phenol Hydroxylation</title><source>Wiley Online Library All Journals</source><creator>Xiang, Bai‐lin ; Fu, Lin ; Li, Yongfei ; Liu, Yuejin</creator><creatorcontrib>Xiang, Bai‐lin ; Fu, Lin ; Li, Yongfei ; Liu, Yuejin</creatorcontrib><description>MOF‐5‐derived porous carbon (MDPC) materials, MDPC‐600 and MDPC‐1000, were prepared by pyrolysis at 600 °C in nitrogen atmosphere prior to acid treatment and at 1000 °C in nitrogen atmosphere, respectively. The samples were characterized by X‐ray diffraction (XRD), Brunauer–Emmett–Teller (BET), scanning electron microscopy (SEM), X–MaxN energy spectrum, and transmission electron microscopy (TEM). The test results of MDPC‐1000 and MDPC‐600 show that both are microporous amorphous carbon with the 2.7 nm diameter pore size, indicating that the micropore of MOF‐5 is well preserved during pyrolysis. MDPC‐1000 and MDPC‐600 have specific surface areas of 1570.9 m2/g and 1029.5 m2/g, respectively. MDPC‐1000 and MDPC‐600 were loaded with Fe ions to prepare Fe(III)/MDPC composite materials, which were used as catalysts for phenol hydroxylation. The results show that Fe(III)/MDPC‐1000 has higher catalytic effect than Fe(III)/MDPC‐600. During one hour phenol hydroxylation at 80 °C with 3 wt.% Fe concentration and a mass ratio of catalyst to phenol of 0.053, Fe(III)/MDPC‐1000 provides maximum phenol conversion, dihydroxybenzene yield, and dihydroxybenzene selectivity of 61.4%, 54.3%, and 88.4%, respectively. Two methods synthesis of MOF‐5‐derived porous carbon (MDPC) and load Fe3+ for phenol hydroxylation, and 88.4% selectivity for dihydroxybenzene and 54.3% yield of dihydroxybenzene were obtained in hydroxylation of phenol with H2O2 over Fe(III)/MDPC‐1000 catalyst.</description><identifier>ISSN: 2365-6549</identifier><identifier>EISSN: 2365-6549</identifier><identifier>DOI: 10.1002/slct.201902941</identifier><language>eng</language><subject>Carbonization ; MOF-5 ; Phenol hydroxylation ; Porous carbon</subject><ispartof>ChemistrySelect (Weinheim), 2019-12, Vol.4 (46), p.13638-13645</ispartof><rights>2019 Wiley‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2891-dc3a96e8ade17b6cabf6c0daac3a33def3c719174abdc3052d2a7bcb3c6c85ea3</citedby><cites>FETCH-LOGICAL-c2891-dc3a96e8ade17b6cabf6c0daac3a33def3c719174abdc3052d2a7bcb3c6c85ea3</cites><orcidid>0000-0002-6801-2951</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fslct.201902941$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fslct.201902941$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27923,27924,45573,45574</link.rule.ids></links><search><creatorcontrib>Xiang, Bai‐lin</creatorcontrib><creatorcontrib>Fu, Lin</creatorcontrib><creatorcontrib>Li, Yongfei</creatorcontrib><creatorcontrib>Liu, Yuejin</creatorcontrib><title>Two Synthesis Methods for Fe(III)@MOF‐5‐derived Porous Carbon Composites for Enhanced Phenol Hydroxylation</title><title>ChemistrySelect (Weinheim)</title><description>MOF‐5‐derived porous carbon (MDPC) materials, MDPC‐600 and MDPC‐1000, were prepared by pyrolysis at 600 °C in nitrogen atmosphere prior to acid treatment and at 1000 °C in nitrogen atmosphere, respectively. The samples were characterized by X‐ray diffraction (XRD), Brunauer–Emmett–Teller (BET), scanning electron microscopy (SEM), X–MaxN energy spectrum, and transmission electron microscopy (TEM). The test results of MDPC‐1000 and MDPC‐600 show that both are microporous amorphous carbon with the 2.7 nm diameter pore size, indicating that the micropore of MOF‐5 is well preserved during pyrolysis. MDPC‐1000 and MDPC‐600 have specific surface areas of 1570.9 m2/g and 1029.5 m2/g, respectively. MDPC‐1000 and MDPC‐600 were loaded with Fe ions to prepare Fe(III)/MDPC composite materials, which were used as catalysts for phenol hydroxylation. The results show that Fe(III)/MDPC‐1000 has higher catalytic effect than Fe(III)/MDPC‐600. During one hour phenol hydroxylation at 80 °C with 3 wt.% Fe concentration and a mass ratio of catalyst to phenol of 0.053, Fe(III)/MDPC‐1000 provides maximum phenol conversion, dihydroxybenzene yield, and dihydroxybenzene selectivity of 61.4%, 54.3%, and 88.4%, respectively. Two methods synthesis of MOF‐5‐derived porous carbon (MDPC) and load Fe3+ for phenol hydroxylation, and 88.4% selectivity for dihydroxybenzene and 54.3% yield of dihydroxybenzene were obtained in hydroxylation of phenol with H2O2 over Fe(III)/MDPC‐1000 catalyst.</description><subject>Carbonization</subject><subject>MOF-5</subject><subject>Phenol hydroxylation</subject><subject>Porous carbon</subject><issn>2365-6549</issn><issn>2365-6549</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFkL1OwzAURi0EElXpyuwRhhT_NE68gaKWRmpVpJY5cuwbJSiNKztQsvUReEaehFRFwMZwda8-fecOB6FrSsaUEHbna92OGaGSMDmhZ2jAuAgDEU7k-Z_7Eo28fyGEUBELFkYD1Gz2Fq-7pi3BVx4voS2t8biwDs_gJk3T2_vlavZ5-Aj7MeCqNzD4yTr76nGiXG4bnNjtzvqqhRM2bUrV6GOrhMbWeN4ZZ9-7WrWVba7QRaFqD6PvPUTPs-kmmQeL1WOaPCwCzWJJA6O5kgJiZYBGudAqL4QmRqk-59xAwXVEJY0mKu-rJGSGqSjXOddCxyEoPkTj01_trPcOimznqq1yXUZJdhSWHYVlP8J6QJ6AfVVD9087Wy-SzS_7BSt_dBM</recordid><startdate>20191213</startdate><enddate>20191213</enddate><creator>Xiang, Bai‐lin</creator><creator>Fu, Lin</creator><creator>Li, Yongfei</creator><creator>Liu, Yuejin</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-6801-2951</orcidid></search><sort><creationdate>20191213</creationdate><title>Two Synthesis Methods for Fe(III)@MOF‐5‐derived Porous Carbon Composites for Enhanced Phenol Hydroxylation</title><author>Xiang, Bai‐lin ; Fu, Lin ; Li, Yongfei ; Liu, Yuejin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2891-dc3a96e8ade17b6cabf6c0daac3a33def3c719174abdc3052d2a7bcb3c6c85ea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Carbonization</topic><topic>MOF-5</topic><topic>Phenol hydroxylation</topic><topic>Porous carbon</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xiang, Bai‐lin</creatorcontrib><creatorcontrib>Fu, Lin</creatorcontrib><creatorcontrib>Li, Yongfei</creatorcontrib><creatorcontrib>Liu, Yuejin</creatorcontrib><collection>CrossRef</collection><jtitle>ChemistrySelect (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xiang, Bai‐lin</au><au>Fu, Lin</au><au>Li, Yongfei</au><au>Liu, Yuejin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Two Synthesis Methods for Fe(III)@MOF‐5‐derived Porous Carbon Composites for Enhanced Phenol Hydroxylation</atitle><jtitle>ChemistrySelect (Weinheim)</jtitle><date>2019-12-13</date><risdate>2019</risdate><volume>4</volume><issue>46</issue><spage>13638</spage><epage>13645</epage><pages>13638-13645</pages><issn>2365-6549</issn><eissn>2365-6549</eissn><abstract>MOF‐5‐derived porous carbon (MDPC) materials, MDPC‐600 and MDPC‐1000, were prepared by pyrolysis at 600 °C in nitrogen atmosphere prior to acid treatment and at 1000 °C in nitrogen atmosphere, respectively. The samples were characterized by X‐ray diffraction (XRD), Brunauer–Emmett–Teller (BET), scanning electron microscopy (SEM), X–MaxN energy spectrum, and transmission electron microscopy (TEM). The test results of MDPC‐1000 and MDPC‐600 show that both are microporous amorphous carbon with the 2.7 nm diameter pore size, indicating that the micropore of MOF‐5 is well preserved during pyrolysis. MDPC‐1000 and MDPC‐600 have specific surface areas of 1570.9 m2/g and 1029.5 m2/g, respectively. MDPC‐1000 and MDPC‐600 were loaded with Fe ions to prepare Fe(III)/MDPC composite materials, which were used as catalysts for phenol hydroxylation. The results show that Fe(III)/MDPC‐1000 has higher catalytic effect than Fe(III)/MDPC‐600. During one hour phenol hydroxylation at 80 °C with 3 wt.% Fe concentration and a mass ratio of catalyst to phenol of 0.053, Fe(III)/MDPC‐1000 provides maximum phenol conversion, dihydroxybenzene yield, and dihydroxybenzene selectivity of 61.4%, 54.3%, and 88.4%, respectively. Two methods synthesis of MOF‐5‐derived porous carbon (MDPC) and load Fe3+ for phenol hydroxylation, and 88.4% selectivity for dihydroxybenzene and 54.3% yield of dihydroxybenzene were obtained in hydroxylation of phenol with H2O2 over Fe(III)/MDPC‐1000 catalyst.</abstract><doi>10.1002/slct.201902941</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-6801-2951</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2365-6549
ispartof ChemistrySelect (Weinheim), 2019-12, Vol.4 (46), p.13638-13645
issn 2365-6549
2365-6549
language eng
recordid cdi_crossref_primary_10_1002_slct_201902941
source Wiley Online Library All Journals
subjects Carbonization
MOF-5
Phenol hydroxylation
Porous carbon
title Two Synthesis Methods for Fe(III)@MOF‐5‐derived Porous Carbon Composites for Enhanced Phenol Hydroxylation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T08%3A51%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Two%20Synthesis%20Methods%20for%20Fe(III)@MOF%E2%80%905%E2%80%90derived%20Porous%20Carbon%20Composites%20for%20Enhanced%20Phenol%20Hydroxylation&rft.jtitle=ChemistrySelect%20(Weinheim)&rft.au=Xiang,%20Bai%E2%80%90lin&rft.date=2019-12-13&rft.volume=4&rft.issue=46&rft.spage=13638&rft.epage=13645&rft.pages=13638-13645&rft.issn=2365-6549&rft.eissn=2365-6549&rft_id=info:doi/10.1002/slct.201902941&rft_dat=%3Cwiley_cross%3ESLCT201902941%3C/wiley_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true