Oxidation Decomposition Mechanism of Fluoroethylene Carbonate‐Based Electrolytes for High‐Voltage Lithium Ion Batteries: A DFT Calculation and Experimental Study

The oxidative decomposition mechanism of fluoroethylene carbonate (FEC) used in high‐voltage batteries is investigated by using density functional theory (DFT). Radical cation FEC•+ is formed from FEC by transferring one electron to electrode and the most likely decomposition products are CO2 and 2‐...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ChemistrySelect (Weinheim) 2017-08, Vol.2 (24), p.7353-7361
Hauptverfasser: Xia, Lan, Tang, Bencan, Yao, Linbin, Wang, Kai, Cheris, Anastasia, Pan, Yueyang, Lee, Saixi, Xia, Yonggao, Chen, George Z., Liu, Zhaoping
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7361
container_issue 24
container_start_page 7353
container_title ChemistrySelect (Weinheim)
container_volume 2
creator Xia, Lan
Tang, Bencan
Yao, Linbin
Wang, Kai
Cheris, Anastasia
Pan, Yueyang
Lee, Saixi
Xia, Yonggao
Chen, George Z.
Liu, Zhaoping
description The oxidative decomposition mechanism of fluoroethylene carbonate (FEC) used in high‐voltage batteries is investigated by using density functional theory (DFT). Radical cation FEC•+ is formed from FEC by transferring one electron to electrode and the most likely decomposition products are CO2 and 2‐fluoroacetaldehyde radical cation. Other possible products are CO, formaldehyde and formyl fluoride radical cations. These radical cations are surrounded by much FEC solvent and their radical center may attack the carbonyl carbon of FEC to form aldehyde and oligomers of alkyl carbonates, which is similar with the oxidative decomposition of EC. Then, our experimental result reveals that FEC‐based electrolyte has rather high anodic stability. It can form a robust SEI film on the positive electrode surface, which can inhibit unwanted electrolyte solvent and LiPF6 salts decomposition, alleviate Mn/Ni dissolution and therefore, improve the coulombic efficiency and the cycling stability of high voltage LiNi0.5Mn1.5O4 positive electrodes. This work displays that FEC‐based electrolyte systems have considerable potential replacement of the EC‐based electrolyte for the applications in 5 V Li‐ion batteries. The oxidative decomposition mechanism of FEC used in high‐voltage batteries is investigated by using density functional theory (DFT) and experimental study. The most likely decomposition products of FEC are CO2 and 2‐fluoroacetaldehyde radical cation, which can further form aldehyde and oligomers of alkyl carbonates. Our experimental result also reveals that FEC‐based electrolyte can form a robust SEI film on the positive electrode surface, which can inhibit unwanted electrolyte solvent and LiPF6 salts decomposition, alleviate Mn/Ni dissolution and therefore, improve the performances of high voltage materials.
doi_str_mv 10.1002/slct.201700938
format Article
fullrecord <record><control><sourceid>wiley_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_slct_201700938</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>SLCT201700938</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3298-78901cf617f20279f73bb647d887eb3eb8ad23104f358ba0fcc12b63dffbee6a3</originalsourceid><addsrcrecordid>eNqFkE1OwzAQhSMEEhV0y9oXaPFPmx92_aWVgrpoYRvZzrg1cuIqdkSz4whcgotxElKKgB2rmdGb9-npBcENwX2CMb11Rvo-xSTCOGHxWdChLBz2wuEgOf-zXwZd554xxiSMQzqMOsH76qBz7rUt0RSkLfbW6a_rAeSOl9oVyCo0N7WtLPhdY6AENOGVsCX38PH6NuYOcjQzIH1lTePBIWUrtNDbXas-WeP5FlCq_U7XBVq25DH3HioN7g6N0HS-aXFG1uYUgpct7LBv9QJKzw1a-zpvroMLxY2D7ve8Ch7ns81k0UtX98vJKO1JRpO4F8UJJlKFJFIU0yhRERMiHER5HEcgGIiY55QRPFBsGAuOlZSEipDlSgmAkLOroH_iyso6V4HK9m0QXjUZwdmx5-zYc_bTc2tIToYXbaD55ztbp5PNr_cT0HqIOg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Oxidation Decomposition Mechanism of Fluoroethylene Carbonate‐Based Electrolytes for High‐Voltage Lithium Ion Batteries: A DFT Calculation and Experimental Study</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Xia, Lan ; Tang, Bencan ; Yao, Linbin ; Wang, Kai ; Cheris, Anastasia ; Pan, Yueyang ; Lee, Saixi ; Xia, Yonggao ; Chen, George Z. ; Liu, Zhaoping</creator><creatorcontrib>Xia, Lan ; Tang, Bencan ; Yao, Linbin ; Wang, Kai ; Cheris, Anastasia ; Pan, Yueyang ; Lee, Saixi ; Xia, Yonggao ; Chen, George Z. ; Liu, Zhaoping</creatorcontrib><description>The oxidative decomposition mechanism of fluoroethylene carbonate (FEC) used in high‐voltage batteries is investigated by using density functional theory (DFT). Radical cation FEC•+ is formed from FEC by transferring one electron to electrode and the most likely decomposition products are CO2 and 2‐fluoroacetaldehyde radical cation. Other possible products are CO, formaldehyde and formyl fluoride radical cations. These radical cations are surrounded by much FEC solvent and their radical center may attack the carbonyl carbon of FEC to form aldehyde and oligomers of alkyl carbonates, which is similar with the oxidative decomposition of EC. Then, our experimental result reveals that FEC‐based electrolyte has rather high anodic stability. It can form a robust SEI film on the positive electrode surface, which can inhibit unwanted electrolyte solvent and LiPF6 salts decomposition, alleviate Mn/Ni dissolution and therefore, improve the coulombic efficiency and the cycling stability of high voltage LiNi0.5Mn1.5O4 positive electrodes. This work displays that FEC‐based electrolyte systems have considerable potential replacement of the EC‐based electrolyte for the applications in 5 V Li‐ion batteries. The oxidative decomposition mechanism of FEC used in high‐voltage batteries is investigated by using density functional theory (DFT) and experimental study. The most likely decomposition products of FEC are CO2 and 2‐fluoroacetaldehyde radical cation, which can further form aldehyde and oligomers of alkyl carbonates. Our experimental result also reveals that FEC‐based electrolyte can form a robust SEI film on the positive electrode surface, which can inhibit unwanted electrolyte solvent and LiPF6 salts decomposition, alleviate Mn/Ni dissolution and therefore, improve the performances of high voltage materials.</description><identifier>ISSN: 2365-6549</identifier><identifier>EISSN: 2365-6549</identifier><identifier>DOI: 10.1002/slct.201700938</identifier><language>eng</language><subject>Density functional calculation ; Fluoroethylene carbonate ; High-voltage ; Lithium ion battery ; Oxidative decomposition</subject><ispartof>ChemistrySelect (Weinheim), 2017-08, Vol.2 (24), p.7353-7361</ispartof><rights>2017 Wiley‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3298-78901cf617f20279f73bb647d887eb3eb8ad23104f358ba0fcc12b63dffbee6a3</citedby><cites>FETCH-LOGICAL-c3298-78901cf617f20279f73bb647d887eb3eb8ad23104f358ba0fcc12b63dffbee6a3</cites><orcidid>0000-0002-6347-636X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fslct.201700938$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fslct.201700938$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Xia, Lan</creatorcontrib><creatorcontrib>Tang, Bencan</creatorcontrib><creatorcontrib>Yao, Linbin</creatorcontrib><creatorcontrib>Wang, Kai</creatorcontrib><creatorcontrib>Cheris, Anastasia</creatorcontrib><creatorcontrib>Pan, Yueyang</creatorcontrib><creatorcontrib>Lee, Saixi</creatorcontrib><creatorcontrib>Xia, Yonggao</creatorcontrib><creatorcontrib>Chen, George Z.</creatorcontrib><creatorcontrib>Liu, Zhaoping</creatorcontrib><title>Oxidation Decomposition Mechanism of Fluoroethylene Carbonate‐Based Electrolytes for High‐Voltage Lithium Ion Batteries: A DFT Calculation and Experimental Study</title><title>ChemistrySelect (Weinheim)</title><description>The oxidative decomposition mechanism of fluoroethylene carbonate (FEC) used in high‐voltage batteries is investigated by using density functional theory (DFT). Radical cation FEC•+ is formed from FEC by transferring one electron to electrode and the most likely decomposition products are CO2 and 2‐fluoroacetaldehyde radical cation. Other possible products are CO, formaldehyde and formyl fluoride radical cations. These radical cations are surrounded by much FEC solvent and their radical center may attack the carbonyl carbon of FEC to form aldehyde and oligomers of alkyl carbonates, which is similar with the oxidative decomposition of EC. Then, our experimental result reveals that FEC‐based electrolyte has rather high anodic stability. It can form a robust SEI film on the positive electrode surface, which can inhibit unwanted electrolyte solvent and LiPF6 salts decomposition, alleviate Mn/Ni dissolution and therefore, improve the coulombic efficiency and the cycling stability of high voltage LiNi0.5Mn1.5O4 positive electrodes. This work displays that FEC‐based electrolyte systems have considerable potential replacement of the EC‐based electrolyte for the applications in 5 V Li‐ion batteries. The oxidative decomposition mechanism of FEC used in high‐voltage batteries is investigated by using density functional theory (DFT) and experimental study. The most likely decomposition products of FEC are CO2 and 2‐fluoroacetaldehyde radical cation, which can further form aldehyde and oligomers of alkyl carbonates. Our experimental result also reveals that FEC‐based electrolyte can form a robust SEI film on the positive electrode surface, which can inhibit unwanted electrolyte solvent and LiPF6 salts decomposition, alleviate Mn/Ni dissolution and therefore, improve the performances of high voltage materials.</description><subject>Density functional calculation</subject><subject>Fluoroethylene carbonate</subject><subject>High-voltage</subject><subject>Lithium ion battery</subject><subject>Oxidative decomposition</subject><issn>2365-6549</issn><issn>2365-6549</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqFkE1OwzAQhSMEEhV0y9oXaPFPmx92_aWVgrpoYRvZzrg1cuIqdkSz4whcgotxElKKgB2rmdGb9-npBcENwX2CMb11Rvo-xSTCOGHxWdChLBz2wuEgOf-zXwZd554xxiSMQzqMOsH76qBz7rUt0RSkLfbW6a_rAeSOl9oVyCo0N7WtLPhdY6AENOGVsCX38PH6NuYOcjQzIH1lTePBIWUrtNDbXas-WeP5FlCq_U7XBVq25DH3HioN7g6N0HS-aXFG1uYUgpct7LBv9QJKzw1a-zpvroMLxY2D7ve8Ch7ns81k0UtX98vJKO1JRpO4F8UJJlKFJFIU0yhRERMiHER5HEcgGIiY55QRPFBsGAuOlZSEipDlSgmAkLOroH_iyso6V4HK9m0QXjUZwdmx5-zYc_bTc2tIToYXbaD55ztbp5PNr_cT0HqIOg</recordid><startdate>20170822</startdate><enddate>20170822</enddate><creator>Xia, Lan</creator><creator>Tang, Bencan</creator><creator>Yao, Linbin</creator><creator>Wang, Kai</creator><creator>Cheris, Anastasia</creator><creator>Pan, Yueyang</creator><creator>Lee, Saixi</creator><creator>Xia, Yonggao</creator><creator>Chen, George Z.</creator><creator>Liu, Zhaoping</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-6347-636X</orcidid></search><sort><creationdate>20170822</creationdate><title>Oxidation Decomposition Mechanism of Fluoroethylene Carbonate‐Based Electrolytes for High‐Voltage Lithium Ion Batteries: A DFT Calculation and Experimental Study</title><author>Xia, Lan ; Tang, Bencan ; Yao, Linbin ; Wang, Kai ; Cheris, Anastasia ; Pan, Yueyang ; Lee, Saixi ; Xia, Yonggao ; Chen, George Z. ; Liu, Zhaoping</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3298-78901cf617f20279f73bb647d887eb3eb8ad23104f358ba0fcc12b63dffbee6a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Density functional calculation</topic><topic>Fluoroethylene carbonate</topic><topic>High-voltage</topic><topic>Lithium ion battery</topic><topic>Oxidative decomposition</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xia, Lan</creatorcontrib><creatorcontrib>Tang, Bencan</creatorcontrib><creatorcontrib>Yao, Linbin</creatorcontrib><creatorcontrib>Wang, Kai</creatorcontrib><creatorcontrib>Cheris, Anastasia</creatorcontrib><creatorcontrib>Pan, Yueyang</creatorcontrib><creatorcontrib>Lee, Saixi</creatorcontrib><creatorcontrib>Xia, Yonggao</creatorcontrib><creatorcontrib>Chen, George Z.</creatorcontrib><creatorcontrib>Liu, Zhaoping</creatorcontrib><collection>CrossRef</collection><jtitle>ChemistrySelect (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xia, Lan</au><au>Tang, Bencan</au><au>Yao, Linbin</au><au>Wang, Kai</au><au>Cheris, Anastasia</au><au>Pan, Yueyang</au><au>Lee, Saixi</au><au>Xia, Yonggao</au><au>Chen, George Z.</au><au>Liu, Zhaoping</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Oxidation Decomposition Mechanism of Fluoroethylene Carbonate‐Based Electrolytes for High‐Voltage Lithium Ion Batteries: A DFT Calculation and Experimental Study</atitle><jtitle>ChemistrySelect (Weinheim)</jtitle><date>2017-08-22</date><risdate>2017</risdate><volume>2</volume><issue>24</issue><spage>7353</spage><epage>7361</epage><pages>7353-7361</pages><issn>2365-6549</issn><eissn>2365-6549</eissn><abstract>The oxidative decomposition mechanism of fluoroethylene carbonate (FEC) used in high‐voltage batteries is investigated by using density functional theory (DFT). Radical cation FEC•+ is formed from FEC by transferring one electron to electrode and the most likely decomposition products are CO2 and 2‐fluoroacetaldehyde radical cation. Other possible products are CO, formaldehyde and formyl fluoride radical cations. These radical cations are surrounded by much FEC solvent and their radical center may attack the carbonyl carbon of FEC to form aldehyde and oligomers of alkyl carbonates, which is similar with the oxidative decomposition of EC. Then, our experimental result reveals that FEC‐based electrolyte has rather high anodic stability. It can form a robust SEI film on the positive electrode surface, which can inhibit unwanted electrolyte solvent and LiPF6 salts decomposition, alleviate Mn/Ni dissolution and therefore, improve the coulombic efficiency and the cycling stability of high voltage LiNi0.5Mn1.5O4 positive electrodes. This work displays that FEC‐based electrolyte systems have considerable potential replacement of the EC‐based electrolyte for the applications in 5 V Li‐ion batteries. The oxidative decomposition mechanism of FEC used in high‐voltage batteries is investigated by using density functional theory (DFT) and experimental study. The most likely decomposition products of FEC are CO2 and 2‐fluoroacetaldehyde radical cation, which can further form aldehyde and oligomers of alkyl carbonates. Our experimental result also reveals that FEC‐based electrolyte can form a robust SEI film on the positive electrode surface, which can inhibit unwanted electrolyte solvent and LiPF6 salts decomposition, alleviate Mn/Ni dissolution and therefore, improve the performances of high voltage materials.</abstract><doi>10.1002/slct.201700938</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-6347-636X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2365-6549
ispartof ChemistrySelect (Weinheim), 2017-08, Vol.2 (24), p.7353-7361
issn 2365-6549
2365-6549
language eng
recordid cdi_crossref_primary_10_1002_slct_201700938
source Wiley Online Library Journals Frontfile Complete
subjects Density functional calculation
Fluoroethylene carbonate
High-voltage
Lithium ion battery
Oxidative decomposition
title Oxidation Decomposition Mechanism of Fluoroethylene Carbonate‐Based Electrolytes for High‐Voltage Lithium Ion Batteries: A DFT Calculation and Experimental Study
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T22%3A39%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Oxidation%20Decomposition%20Mechanism%20of%20Fluoroethylene%20Carbonate%E2%80%90Based%20Electrolytes%20for%20High%E2%80%90Voltage%20Lithium%20Ion%20Batteries:%20A%20DFT%20Calculation%20and%20Experimental%20Study&rft.jtitle=ChemistrySelect%20(Weinheim)&rft.au=Xia,%20Lan&rft.date=2017-08-22&rft.volume=2&rft.issue=24&rft.spage=7353&rft.epage=7361&rft.pages=7353-7361&rft.issn=2365-6549&rft.eissn=2365-6549&rft_id=info:doi/10.1002/slct.201700938&rft_dat=%3Cwiley_cross%3ESLCT201700938%3C/wiley_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true