Oxidation Decomposition Mechanism of Fluoroethylene Carbonate‐Based Electrolytes for High‐Voltage Lithium Ion Batteries: A DFT Calculation and Experimental Study
The oxidative decomposition mechanism of fluoroethylene carbonate (FEC) used in high‐voltage batteries is investigated by using density functional theory (DFT). Radical cation FEC•+ is formed from FEC by transferring one electron to electrode and the most likely decomposition products are CO2 and 2‐...
Gespeichert in:
Veröffentlicht in: | ChemistrySelect (Weinheim) 2017-08, Vol.2 (24), p.7353-7361 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 7361 |
---|---|
container_issue | 24 |
container_start_page | 7353 |
container_title | ChemistrySelect (Weinheim) |
container_volume | 2 |
creator | Xia, Lan Tang, Bencan Yao, Linbin Wang, Kai Cheris, Anastasia Pan, Yueyang Lee, Saixi Xia, Yonggao Chen, George Z. Liu, Zhaoping |
description | The oxidative decomposition mechanism of fluoroethylene carbonate (FEC) used in high‐voltage batteries is investigated by using density functional theory (DFT). Radical cation FEC•+ is formed from FEC by transferring one electron to electrode and the most likely decomposition products are CO2 and 2‐fluoroacetaldehyde radical cation. Other possible products are CO, formaldehyde and formyl fluoride radical cations. These radical cations are surrounded by much FEC solvent and their radical center may attack the carbonyl carbon of FEC to form aldehyde and oligomers of alkyl carbonates, which is similar with the oxidative decomposition of EC. Then, our experimental result reveals that FEC‐based electrolyte has rather high anodic stability. It can form a robust SEI film on the positive electrode surface, which can inhibit unwanted electrolyte solvent and LiPF6 salts decomposition, alleviate Mn/Ni dissolution and therefore, improve the coulombic efficiency and the cycling stability of high voltage LiNi0.5Mn1.5O4 positive electrodes. This work displays that FEC‐based electrolyte systems have considerable potential replacement of the EC‐based electrolyte for the applications in 5 V Li‐ion batteries.
The oxidative decomposition mechanism of FEC used in high‐voltage batteries is investigated by using density functional theory (DFT) and experimental study. The most likely decomposition products of FEC are CO2 and 2‐fluoroacetaldehyde radical cation, which can further form aldehyde and oligomers of alkyl carbonates. Our experimental result also reveals that FEC‐based electrolyte can form a robust SEI film on the positive electrode surface, which can inhibit unwanted electrolyte solvent and LiPF6 salts decomposition, alleviate Mn/Ni dissolution and therefore, improve the performances of high voltage materials. |
doi_str_mv | 10.1002/slct.201700938 |
format | Article |
fullrecord | <record><control><sourceid>wiley_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_slct_201700938</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>SLCT201700938</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3298-78901cf617f20279f73bb647d887eb3eb8ad23104f358ba0fcc12b63dffbee6a3</originalsourceid><addsrcrecordid>eNqFkE1OwzAQhSMEEhV0y9oXaPFPmx92_aWVgrpoYRvZzrg1cuIqdkSz4whcgotxElKKgB2rmdGb9-npBcENwX2CMb11Rvo-xSTCOGHxWdChLBz2wuEgOf-zXwZd554xxiSMQzqMOsH76qBz7rUt0RSkLfbW6a_rAeSOl9oVyCo0N7WtLPhdY6AENOGVsCX38PH6NuYOcjQzIH1lTePBIWUrtNDbXas-WeP5FlCq_U7XBVq25DH3HioN7g6N0HS-aXFG1uYUgpct7LBv9QJKzw1a-zpvroMLxY2D7ve8Ch7ns81k0UtX98vJKO1JRpO4F8UJJlKFJFIU0yhRERMiHER5HEcgGIiY55QRPFBsGAuOlZSEipDlSgmAkLOroH_iyso6V4HK9m0QXjUZwdmx5-zYc_bTc2tIToYXbaD55ztbp5PNr_cT0HqIOg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Oxidation Decomposition Mechanism of Fluoroethylene Carbonate‐Based Electrolytes for High‐Voltage Lithium Ion Batteries: A DFT Calculation and Experimental Study</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Xia, Lan ; Tang, Bencan ; Yao, Linbin ; Wang, Kai ; Cheris, Anastasia ; Pan, Yueyang ; Lee, Saixi ; Xia, Yonggao ; Chen, George Z. ; Liu, Zhaoping</creator><creatorcontrib>Xia, Lan ; Tang, Bencan ; Yao, Linbin ; Wang, Kai ; Cheris, Anastasia ; Pan, Yueyang ; Lee, Saixi ; Xia, Yonggao ; Chen, George Z. ; Liu, Zhaoping</creatorcontrib><description>The oxidative decomposition mechanism of fluoroethylene carbonate (FEC) used in high‐voltage batteries is investigated by using density functional theory (DFT). Radical cation FEC•+ is formed from FEC by transferring one electron to electrode and the most likely decomposition products are CO2 and 2‐fluoroacetaldehyde radical cation. Other possible products are CO, formaldehyde and formyl fluoride radical cations. These radical cations are surrounded by much FEC solvent and their radical center may attack the carbonyl carbon of FEC to form aldehyde and oligomers of alkyl carbonates, which is similar with the oxidative decomposition of EC. Then, our experimental result reveals that FEC‐based electrolyte has rather high anodic stability. It can form a robust SEI film on the positive electrode surface, which can inhibit unwanted electrolyte solvent and LiPF6 salts decomposition, alleviate Mn/Ni dissolution and therefore, improve the coulombic efficiency and the cycling stability of high voltage LiNi0.5Mn1.5O4 positive electrodes. This work displays that FEC‐based electrolyte systems have considerable potential replacement of the EC‐based electrolyte for the applications in 5 V Li‐ion batteries.
The oxidative decomposition mechanism of FEC used in high‐voltage batteries is investigated by using density functional theory (DFT) and experimental study. The most likely decomposition products of FEC are CO2 and 2‐fluoroacetaldehyde radical cation, which can further form aldehyde and oligomers of alkyl carbonates. Our experimental result also reveals that FEC‐based electrolyte can form a robust SEI film on the positive electrode surface, which can inhibit unwanted electrolyte solvent and LiPF6 salts decomposition, alleviate Mn/Ni dissolution and therefore, improve the performances of high voltage materials.</description><identifier>ISSN: 2365-6549</identifier><identifier>EISSN: 2365-6549</identifier><identifier>DOI: 10.1002/slct.201700938</identifier><language>eng</language><subject>Density functional calculation ; Fluoroethylene carbonate ; High-voltage ; Lithium ion battery ; Oxidative decomposition</subject><ispartof>ChemistrySelect (Weinheim), 2017-08, Vol.2 (24), p.7353-7361</ispartof><rights>2017 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3298-78901cf617f20279f73bb647d887eb3eb8ad23104f358ba0fcc12b63dffbee6a3</citedby><cites>FETCH-LOGICAL-c3298-78901cf617f20279f73bb647d887eb3eb8ad23104f358ba0fcc12b63dffbee6a3</cites><orcidid>0000-0002-6347-636X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fslct.201700938$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fslct.201700938$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Xia, Lan</creatorcontrib><creatorcontrib>Tang, Bencan</creatorcontrib><creatorcontrib>Yao, Linbin</creatorcontrib><creatorcontrib>Wang, Kai</creatorcontrib><creatorcontrib>Cheris, Anastasia</creatorcontrib><creatorcontrib>Pan, Yueyang</creatorcontrib><creatorcontrib>Lee, Saixi</creatorcontrib><creatorcontrib>Xia, Yonggao</creatorcontrib><creatorcontrib>Chen, George Z.</creatorcontrib><creatorcontrib>Liu, Zhaoping</creatorcontrib><title>Oxidation Decomposition Mechanism of Fluoroethylene Carbonate‐Based Electrolytes for High‐Voltage Lithium Ion Batteries: A DFT Calculation and Experimental Study</title><title>ChemistrySelect (Weinheim)</title><description>The oxidative decomposition mechanism of fluoroethylene carbonate (FEC) used in high‐voltage batteries is investigated by using density functional theory (DFT). Radical cation FEC•+ is formed from FEC by transferring one electron to electrode and the most likely decomposition products are CO2 and 2‐fluoroacetaldehyde radical cation. Other possible products are CO, formaldehyde and formyl fluoride radical cations. These radical cations are surrounded by much FEC solvent and their radical center may attack the carbonyl carbon of FEC to form aldehyde and oligomers of alkyl carbonates, which is similar with the oxidative decomposition of EC. Then, our experimental result reveals that FEC‐based electrolyte has rather high anodic stability. It can form a robust SEI film on the positive electrode surface, which can inhibit unwanted electrolyte solvent and LiPF6 salts decomposition, alleviate Mn/Ni dissolution and therefore, improve the coulombic efficiency and the cycling stability of high voltage LiNi0.5Mn1.5O4 positive electrodes. This work displays that FEC‐based electrolyte systems have considerable potential replacement of the EC‐based electrolyte for the applications in 5 V Li‐ion batteries.
The oxidative decomposition mechanism of FEC used in high‐voltage batteries is investigated by using density functional theory (DFT) and experimental study. The most likely decomposition products of FEC are CO2 and 2‐fluoroacetaldehyde radical cation, which can further form aldehyde and oligomers of alkyl carbonates. Our experimental result also reveals that FEC‐based electrolyte can form a robust SEI film on the positive electrode surface, which can inhibit unwanted electrolyte solvent and LiPF6 salts decomposition, alleviate Mn/Ni dissolution and therefore, improve the performances of high voltage materials.</description><subject>Density functional calculation</subject><subject>Fluoroethylene carbonate</subject><subject>High-voltage</subject><subject>Lithium ion battery</subject><subject>Oxidative decomposition</subject><issn>2365-6549</issn><issn>2365-6549</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqFkE1OwzAQhSMEEhV0y9oXaPFPmx92_aWVgrpoYRvZzrg1cuIqdkSz4whcgotxElKKgB2rmdGb9-npBcENwX2CMb11Rvo-xSTCOGHxWdChLBz2wuEgOf-zXwZd554xxiSMQzqMOsH76qBz7rUt0RSkLfbW6a_rAeSOl9oVyCo0N7WtLPhdY6AENOGVsCX38PH6NuYOcjQzIH1lTePBIWUrtNDbXas-WeP5FlCq_U7XBVq25DH3HioN7g6N0HS-aXFG1uYUgpct7LBv9QJKzw1a-zpvroMLxY2D7ve8Ch7ns81k0UtX98vJKO1JRpO4F8UJJlKFJFIU0yhRERMiHER5HEcgGIiY55QRPFBsGAuOlZSEipDlSgmAkLOroH_iyso6V4HK9m0QXjUZwdmx5-zYc_bTc2tIToYXbaD55ztbp5PNr_cT0HqIOg</recordid><startdate>20170822</startdate><enddate>20170822</enddate><creator>Xia, Lan</creator><creator>Tang, Bencan</creator><creator>Yao, Linbin</creator><creator>Wang, Kai</creator><creator>Cheris, Anastasia</creator><creator>Pan, Yueyang</creator><creator>Lee, Saixi</creator><creator>Xia, Yonggao</creator><creator>Chen, George Z.</creator><creator>Liu, Zhaoping</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-6347-636X</orcidid></search><sort><creationdate>20170822</creationdate><title>Oxidation Decomposition Mechanism of Fluoroethylene Carbonate‐Based Electrolytes for High‐Voltage Lithium Ion Batteries: A DFT Calculation and Experimental Study</title><author>Xia, Lan ; Tang, Bencan ; Yao, Linbin ; Wang, Kai ; Cheris, Anastasia ; Pan, Yueyang ; Lee, Saixi ; Xia, Yonggao ; Chen, George Z. ; Liu, Zhaoping</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3298-78901cf617f20279f73bb647d887eb3eb8ad23104f358ba0fcc12b63dffbee6a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Density functional calculation</topic><topic>Fluoroethylene carbonate</topic><topic>High-voltage</topic><topic>Lithium ion battery</topic><topic>Oxidative decomposition</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xia, Lan</creatorcontrib><creatorcontrib>Tang, Bencan</creatorcontrib><creatorcontrib>Yao, Linbin</creatorcontrib><creatorcontrib>Wang, Kai</creatorcontrib><creatorcontrib>Cheris, Anastasia</creatorcontrib><creatorcontrib>Pan, Yueyang</creatorcontrib><creatorcontrib>Lee, Saixi</creatorcontrib><creatorcontrib>Xia, Yonggao</creatorcontrib><creatorcontrib>Chen, George Z.</creatorcontrib><creatorcontrib>Liu, Zhaoping</creatorcontrib><collection>CrossRef</collection><jtitle>ChemistrySelect (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xia, Lan</au><au>Tang, Bencan</au><au>Yao, Linbin</au><au>Wang, Kai</au><au>Cheris, Anastasia</au><au>Pan, Yueyang</au><au>Lee, Saixi</au><au>Xia, Yonggao</au><au>Chen, George Z.</au><au>Liu, Zhaoping</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Oxidation Decomposition Mechanism of Fluoroethylene Carbonate‐Based Electrolytes for High‐Voltage Lithium Ion Batteries: A DFT Calculation and Experimental Study</atitle><jtitle>ChemistrySelect (Weinheim)</jtitle><date>2017-08-22</date><risdate>2017</risdate><volume>2</volume><issue>24</issue><spage>7353</spage><epage>7361</epage><pages>7353-7361</pages><issn>2365-6549</issn><eissn>2365-6549</eissn><abstract>The oxidative decomposition mechanism of fluoroethylene carbonate (FEC) used in high‐voltage batteries is investigated by using density functional theory (DFT). Radical cation FEC•+ is formed from FEC by transferring one electron to electrode and the most likely decomposition products are CO2 and 2‐fluoroacetaldehyde radical cation. Other possible products are CO, formaldehyde and formyl fluoride radical cations. These radical cations are surrounded by much FEC solvent and their radical center may attack the carbonyl carbon of FEC to form aldehyde and oligomers of alkyl carbonates, which is similar with the oxidative decomposition of EC. Then, our experimental result reveals that FEC‐based electrolyte has rather high anodic stability. It can form a robust SEI film on the positive electrode surface, which can inhibit unwanted electrolyte solvent and LiPF6 salts decomposition, alleviate Mn/Ni dissolution and therefore, improve the coulombic efficiency and the cycling stability of high voltage LiNi0.5Mn1.5O4 positive electrodes. This work displays that FEC‐based electrolyte systems have considerable potential replacement of the EC‐based electrolyte for the applications in 5 V Li‐ion batteries.
The oxidative decomposition mechanism of FEC used in high‐voltage batteries is investigated by using density functional theory (DFT) and experimental study. The most likely decomposition products of FEC are CO2 and 2‐fluoroacetaldehyde radical cation, which can further form aldehyde and oligomers of alkyl carbonates. Our experimental result also reveals that FEC‐based electrolyte can form a robust SEI film on the positive electrode surface, which can inhibit unwanted electrolyte solvent and LiPF6 salts decomposition, alleviate Mn/Ni dissolution and therefore, improve the performances of high voltage materials.</abstract><doi>10.1002/slct.201700938</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-6347-636X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2365-6549 |
ispartof | ChemistrySelect (Weinheim), 2017-08, Vol.2 (24), p.7353-7361 |
issn | 2365-6549 2365-6549 |
language | eng |
recordid | cdi_crossref_primary_10_1002_slct_201700938 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Density functional calculation Fluoroethylene carbonate High-voltage Lithium ion battery Oxidative decomposition |
title | Oxidation Decomposition Mechanism of Fluoroethylene Carbonate‐Based Electrolytes for High‐Voltage Lithium Ion Batteries: A DFT Calculation and Experimental Study |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T22%3A39%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Oxidation%20Decomposition%20Mechanism%20of%20Fluoroethylene%20Carbonate%E2%80%90Based%20Electrolytes%20for%20High%E2%80%90Voltage%20Lithium%20Ion%20Batteries:%20A%20DFT%20Calculation%20and%20Experimental%20Study&rft.jtitle=ChemistrySelect%20(Weinheim)&rft.au=Xia,%20Lan&rft.date=2017-08-22&rft.volume=2&rft.issue=24&rft.spage=7353&rft.epage=7361&rft.pages=7353-7361&rft.issn=2365-6549&rft.eissn=2365-6549&rft_id=info:doi/10.1002/slct.201700938&rft_dat=%3Cwiley_cross%3ESLCT201700938%3C/wiley_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |