Critical review of the current status of thickness measurements for ultrathin SiO 2 on Si Part V: Results of a CCQM pilot study
Results are reported from a pilot study under the Consultative Committee for Amount of Substance (CCQM) to compare measurements of and resolve any relevant measurement issues in the amount of thermal oxide on (100) and (111) orientation silicon wafer substrates in the thickness range 1.5–8 nm. As a...
Gespeichert in:
Veröffentlicht in: | Surface and interface analysis 2004-09, Vol.36 (9), p.1269-1303 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1303 |
---|---|
container_issue | 9 |
container_start_page | 1269 |
container_title | Surface and interface analysis |
container_volume | 36 |
creator | Seah, M. P. Spencer, S. J. Bensebaa, F. Vickridge, I. Danzebrink, H. Krumrey, M. Gross, T. Oesterle, W. Wendler, E. Rheinländer, B. Azuma, Y. Kojima, I. Suzuki, N. Suzuki, M. Tanuma, S. Moon, D. W. Lee, H. J. Cho, Hyun Mo Chen, H. Y. Wee, A. T. S. Osipowicz, T. Pan, J. S. Jordaan, W. A. Hauert, R. Klotz, U. van der Marel, C. Verheijen, M. Tamminga, Y. Jeynes, C. Bailey, P. Biswas, S. Falke, U. Nguyen, N. V. Chandler‐Horowitz, D. Ehrstein, J. R. Muller, D. Dura, J. A. |
description | Results are reported from a pilot study under the Consultative Committee for Amount of Substance (CCQM) to compare measurements of and resolve any relevant measurement issues in the amount of thermal oxide on (100) and (111) orientation silicon wafer substrates in the thickness range 1.5–8 nm. As a result of the invitation to participate in this activity, 45 sets of measurements have been made in different laboratories using 10 analytical methods: medium—energy ion scattering spectrometry (MEIS), nuclear reaction analysis (NRA), RBS, elastic backscattering spectrometry (EBS), XPS, SIMS, ellipsometry, grazing—incidence x‐ray reflectometry (GIXRR), neutron reflectometry and transmission electron microscopy (TEM). The measurements are made on separate sets of 10 carefully prepared samples, all of which have been characterized by a combination of ellipsometry and XPS using carefully established reference conditions and reference parameters.
The results have been assessed against the National Physical Laboratory (NPL) data and all show excellent linearity. The data sets correlate with the NPL data with average root‐mean‐square scatters of 0.15 nm, half being better than 0.1 nm and a few at or better than 0.05 nm. Each set of data allows a relative scaling constant and a zero thickness offset to be determined. Each method has an inherent zero thickness offset between 0 nm and 1 nm and it is these offsets, measured here for the first time, that have caused many problems in the past. There are three basic classes of offset: water and carbonaceous contamination equivalent to ∼ 1 nm as seen by ellipsometry; adsorbed oxygen mainly from water at an equivalent thickness of 0.5 nm as seen by MEIS, NRA, RBS and possibly GIXRR; and no offset as seen by XPS using the Si 2p peaks. Each technique has a different uncertainty for the scaling constant and consistent results have been achieved. X‐ray photoelectron spectroscopy has large uncertainties for the scaling constant but a high precision and critically, if used correctly, has zero offset. Thus, a combination of XPS and the other methods allows the XPS scaling constant to be determined with low uncertainty, traceable via the other methods. The XPS laboratories returning results early were invited to test a new reference procedure. All showed very significant improvements. The reference attenuation lengths thus need scaling by 0.986 ± 0.009 (at an expansion factor of 2), deduced from the data for the other methods. Several |
doi_str_mv | 10.1002/sia.1909 |
format | Article |
fullrecord | <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1002_sia_1909</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1002_sia_1909</sourcerecordid><originalsourceid>FETCH-LOGICAL-c140t-1f9b5b8ced82f3c1c537e8f7dfd600dc1d2bc5688a7789695e324d0fefd0fd6f3</originalsourceid><addsrcrecordid>eNotkMlOwzAQhi0EEqUg8Qhz5JIydjabG4rYpKKyXyPXizBkqWwH1BOvTkK5zIz-f_QdPkJOKS4oIjsPTi6oQLFHZhRFkQhB-T6ZIc1YwjJGD8lRCB-IyFNezMhP5V10SjbgzZcz39BbiO8G1OC96SKEKOMQdqlTn50JAVojw-BNO_YBbO9haKKXY9_Bs1sBg3464EH6CG8X8GTC-PDHkFBVj_ewcU0_oQe9PSYHVjbBnPzvOXm9vnqpbpPl6uauulwmimYYE2rFOl9zZTRnNlVU5WlpuC211QWiVlSztcoLzmVZclGI3KQs02iNHYcubDonZzuu8n0I3th6410r_bamWE_i6lFcPYlLfwF6PWK-</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Critical review of the current status of thickness measurements for ultrathin SiO 2 on Si Part V: Results of a CCQM pilot study</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Seah, M. P. ; Spencer, S. J. ; Bensebaa, F. ; Vickridge, I. ; Danzebrink, H. ; Krumrey, M. ; Gross, T. ; Oesterle, W. ; Wendler, E. ; Rheinländer, B. ; Azuma, Y. ; Kojima, I. ; Suzuki, N. ; Suzuki, M. ; Tanuma, S. ; Moon, D. W. ; Lee, H. J. ; Cho, Hyun Mo ; Chen, H. Y. ; Wee, A. T. S. ; Osipowicz, T. ; Pan, J. S. ; Jordaan, W. A. ; Hauert, R. ; Klotz, U. ; van der Marel, C. ; Verheijen, M. ; Tamminga, Y. ; Jeynes, C. ; Bailey, P. ; Biswas, S. ; Falke, U. ; Nguyen, N. V. ; Chandler‐Horowitz, D. ; Ehrstein, J. R. ; Muller, D. ; Dura, J. A.</creator><creatorcontrib>Seah, M. P. ; Spencer, S. J. ; Bensebaa, F. ; Vickridge, I. ; Danzebrink, H. ; Krumrey, M. ; Gross, T. ; Oesterle, W. ; Wendler, E. ; Rheinländer, B. ; Azuma, Y. ; Kojima, I. ; Suzuki, N. ; Suzuki, M. ; Tanuma, S. ; Moon, D. W. ; Lee, H. J. ; Cho, Hyun Mo ; Chen, H. Y. ; Wee, A. T. S. ; Osipowicz, T. ; Pan, J. S. ; Jordaan, W. A. ; Hauert, R. ; Klotz, U. ; van der Marel, C. ; Verheijen, M. ; Tamminga, Y. ; Jeynes, C. ; Bailey, P. ; Biswas, S. ; Falke, U. ; Nguyen, N. V. ; Chandler‐Horowitz, D. ; Ehrstein, J. R. ; Muller, D. ; Dura, J. A.</creatorcontrib><description>Results are reported from a pilot study under the Consultative Committee for Amount of Substance (CCQM) to compare measurements of and resolve any relevant measurement issues in the amount of thermal oxide on (100) and (111) orientation silicon wafer substrates in the thickness range 1.5–8 nm. As a result of the invitation to participate in this activity, 45 sets of measurements have been made in different laboratories using 10 analytical methods: medium—energy ion scattering spectrometry (MEIS), nuclear reaction analysis (NRA), RBS, elastic backscattering spectrometry (EBS), XPS, SIMS, ellipsometry, grazing—incidence x‐ray reflectometry (GIXRR), neutron reflectometry and transmission electron microscopy (TEM). The measurements are made on separate sets of 10 carefully prepared samples, all of which have been characterized by a combination of ellipsometry and XPS using carefully established reference conditions and reference parameters.
The results have been assessed against the National Physical Laboratory (NPL) data and all show excellent linearity. The data sets correlate with the NPL data with average root‐mean‐square scatters of 0.15 nm, half being better than 0.1 nm and a few at or better than 0.05 nm. Each set of data allows a relative scaling constant and a zero thickness offset to be determined. Each method has an inherent zero thickness offset between 0 nm and 1 nm and it is these offsets, measured here for the first time, that have caused many problems in the past. There are three basic classes of offset: water and carbonaceous contamination equivalent to ∼ 1 nm as seen by ellipsometry; adsorbed oxygen mainly from water at an equivalent thickness of 0.5 nm as seen by MEIS, NRA, RBS and possibly GIXRR; and no offset as seen by XPS using the Si 2p peaks. Each technique has a different uncertainty for the scaling constant and consistent results have been achieved. X‐ray photoelectron spectroscopy has large uncertainties for the scaling constant but a high precision and critically, if used correctly, has zero offset. Thus, a combination of XPS and the other methods allows the XPS scaling constant to be determined with low uncertainty, traceable via the other methods. The XPS laboratories returning results early were invited to test a new reference procedure. All showed very significant improvements. The reference attenuation lengths thus need scaling by 0.986 ± 0.009 (at an expansion factor of 2), deduced from the data for the other methods. Several other methods have small offsets and, to the extent that these can be shown to be constant or measurable, these methods will also show low uncertainty. Recommendations are provided for parameters for XPS, MEIS, RBS and NRA to improve their accuracy. Copyright © 2004 John Wiley & Sons, Ltd.</description><identifier>ISSN: 0142-2421</identifier><identifier>EISSN: 1096-9918</identifier><identifier>DOI: 10.1002/sia.1909</identifier><language>eng</language><ispartof>Surface and interface analysis, 2004-09, Vol.36 (9), p.1269-1303</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c140t-1f9b5b8ced82f3c1c537e8f7dfd600dc1d2bc5688a7789695e324d0fefd0fd6f3</citedby><cites>FETCH-LOGICAL-c140t-1f9b5b8ced82f3c1c537e8f7dfd600dc1d2bc5688a7789695e324d0fefd0fd6f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Seah, M. P.</creatorcontrib><creatorcontrib>Spencer, S. J.</creatorcontrib><creatorcontrib>Bensebaa, F.</creatorcontrib><creatorcontrib>Vickridge, I.</creatorcontrib><creatorcontrib>Danzebrink, H.</creatorcontrib><creatorcontrib>Krumrey, M.</creatorcontrib><creatorcontrib>Gross, T.</creatorcontrib><creatorcontrib>Oesterle, W.</creatorcontrib><creatorcontrib>Wendler, E.</creatorcontrib><creatorcontrib>Rheinländer, B.</creatorcontrib><creatorcontrib>Azuma, Y.</creatorcontrib><creatorcontrib>Kojima, I.</creatorcontrib><creatorcontrib>Suzuki, N.</creatorcontrib><creatorcontrib>Suzuki, M.</creatorcontrib><creatorcontrib>Tanuma, S.</creatorcontrib><creatorcontrib>Moon, D. W.</creatorcontrib><creatorcontrib>Lee, H. J.</creatorcontrib><creatorcontrib>Cho, Hyun Mo</creatorcontrib><creatorcontrib>Chen, H. Y.</creatorcontrib><creatorcontrib>Wee, A. T. S.</creatorcontrib><creatorcontrib>Osipowicz, T.</creatorcontrib><creatorcontrib>Pan, J. S.</creatorcontrib><creatorcontrib>Jordaan, W. A.</creatorcontrib><creatorcontrib>Hauert, R.</creatorcontrib><creatorcontrib>Klotz, U.</creatorcontrib><creatorcontrib>van der Marel, C.</creatorcontrib><creatorcontrib>Verheijen, M.</creatorcontrib><creatorcontrib>Tamminga, Y.</creatorcontrib><creatorcontrib>Jeynes, C.</creatorcontrib><creatorcontrib>Bailey, P.</creatorcontrib><creatorcontrib>Biswas, S.</creatorcontrib><creatorcontrib>Falke, U.</creatorcontrib><creatorcontrib>Nguyen, N. V.</creatorcontrib><creatorcontrib>Chandler‐Horowitz, D.</creatorcontrib><creatorcontrib>Ehrstein, J. R.</creatorcontrib><creatorcontrib>Muller, D.</creatorcontrib><creatorcontrib>Dura, J. A.</creatorcontrib><title>Critical review of the current status of thickness measurements for ultrathin SiO 2 on Si Part V: Results of a CCQM pilot study</title><title>Surface and interface analysis</title><description>Results are reported from a pilot study under the Consultative Committee for Amount of Substance (CCQM) to compare measurements of and resolve any relevant measurement issues in the amount of thermal oxide on (100) and (111) orientation silicon wafer substrates in the thickness range 1.5–8 nm. As a result of the invitation to participate in this activity, 45 sets of measurements have been made in different laboratories using 10 analytical methods: medium—energy ion scattering spectrometry (MEIS), nuclear reaction analysis (NRA), RBS, elastic backscattering spectrometry (EBS), XPS, SIMS, ellipsometry, grazing—incidence x‐ray reflectometry (GIXRR), neutron reflectometry and transmission electron microscopy (TEM). The measurements are made on separate sets of 10 carefully prepared samples, all of which have been characterized by a combination of ellipsometry and XPS using carefully established reference conditions and reference parameters.
The results have been assessed against the National Physical Laboratory (NPL) data and all show excellent linearity. The data sets correlate with the NPL data with average root‐mean‐square scatters of 0.15 nm, half being better than 0.1 nm and a few at or better than 0.05 nm. Each set of data allows a relative scaling constant and a zero thickness offset to be determined. Each method has an inherent zero thickness offset between 0 nm and 1 nm and it is these offsets, measured here for the first time, that have caused many problems in the past. There are three basic classes of offset: water and carbonaceous contamination equivalent to ∼ 1 nm as seen by ellipsometry; adsorbed oxygen mainly from water at an equivalent thickness of 0.5 nm as seen by MEIS, NRA, RBS and possibly GIXRR; and no offset as seen by XPS using the Si 2p peaks. Each technique has a different uncertainty for the scaling constant and consistent results have been achieved. X‐ray photoelectron spectroscopy has large uncertainties for the scaling constant but a high precision and critically, if used correctly, has zero offset. Thus, a combination of XPS and the other methods allows the XPS scaling constant to be determined with low uncertainty, traceable via the other methods. The XPS laboratories returning results early were invited to test a new reference procedure. All showed very significant improvements. The reference attenuation lengths thus need scaling by 0.986 ± 0.009 (at an expansion factor of 2), deduced from the data for the other methods. Several other methods have small offsets and, to the extent that these can be shown to be constant or measurable, these methods will also show low uncertainty. Recommendations are provided for parameters for XPS, MEIS, RBS and NRA to improve their accuracy. Copyright © 2004 John Wiley & Sons, Ltd.</description><issn>0142-2421</issn><issn>1096-9918</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNotkMlOwzAQhi0EEqUg8Qhz5JIydjabG4rYpKKyXyPXizBkqWwH1BOvTkK5zIz-f_QdPkJOKS4oIjsPTi6oQLFHZhRFkQhB-T6ZIc1YwjJGD8lRCB-IyFNezMhP5V10SjbgzZcz39BbiO8G1OC96SKEKOMQdqlTn50JAVojw-BNO_YBbO9haKKXY9_Bs1sBg3464EH6CG8X8GTC-PDHkFBVj_ewcU0_oQe9PSYHVjbBnPzvOXm9vnqpbpPl6uauulwmimYYE2rFOl9zZTRnNlVU5WlpuC211QWiVlSztcoLzmVZclGI3KQs02iNHYcubDonZzuu8n0I3th6410r_bamWE_i6lFcPYlLfwF6PWK-</recordid><startdate>200409</startdate><enddate>200409</enddate><creator>Seah, M. P.</creator><creator>Spencer, S. J.</creator><creator>Bensebaa, F.</creator><creator>Vickridge, I.</creator><creator>Danzebrink, H.</creator><creator>Krumrey, M.</creator><creator>Gross, T.</creator><creator>Oesterle, W.</creator><creator>Wendler, E.</creator><creator>Rheinländer, B.</creator><creator>Azuma, Y.</creator><creator>Kojima, I.</creator><creator>Suzuki, N.</creator><creator>Suzuki, M.</creator><creator>Tanuma, S.</creator><creator>Moon, D. W.</creator><creator>Lee, H. J.</creator><creator>Cho, Hyun Mo</creator><creator>Chen, H. Y.</creator><creator>Wee, A. T. S.</creator><creator>Osipowicz, T.</creator><creator>Pan, J. S.</creator><creator>Jordaan, W. A.</creator><creator>Hauert, R.</creator><creator>Klotz, U.</creator><creator>van der Marel, C.</creator><creator>Verheijen, M.</creator><creator>Tamminga, Y.</creator><creator>Jeynes, C.</creator><creator>Bailey, P.</creator><creator>Biswas, S.</creator><creator>Falke, U.</creator><creator>Nguyen, N. V.</creator><creator>Chandler‐Horowitz, D.</creator><creator>Ehrstein, J. R.</creator><creator>Muller, D.</creator><creator>Dura, J. A.</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>200409</creationdate><title>Critical review of the current status of thickness measurements for ultrathin SiO 2 on Si Part V: Results of a CCQM pilot study</title><author>Seah, M. P. ; Spencer, S. J. ; Bensebaa, F. ; Vickridge, I. ; Danzebrink, H. ; Krumrey, M. ; Gross, T. ; Oesterle, W. ; Wendler, E. ; Rheinländer, B. ; Azuma, Y. ; Kojima, I. ; Suzuki, N. ; Suzuki, M. ; Tanuma, S. ; Moon, D. W. ; Lee, H. J. ; Cho, Hyun Mo ; Chen, H. Y. ; Wee, A. T. S. ; Osipowicz, T. ; Pan, J. S. ; Jordaan, W. A. ; Hauert, R. ; Klotz, U. ; van der Marel, C. ; Verheijen, M. ; Tamminga, Y. ; Jeynes, C. ; Bailey, P. ; Biswas, S. ; Falke, U. ; Nguyen, N. V. ; Chandler‐Horowitz, D. ; Ehrstein, J. R. ; Muller, D. ; Dura, J. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c140t-1f9b5b8ced82f3c1c537e8f7dfd600dc1d2bc5688a7789695e324d0fefd0fd6f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Seah, M. P.</creatorcontrib><creatorcontrib>Spencer, S. J.</creatorcontrib><creatorcontrib>Bensebaa, F.</creatorcontrib><creatorcontrib>Vickridge, I.</creatorcontrib><creatorcontrib>Danzebrink, H.</creatorcontrib><creatorcontrib>Krumrey, M.</creatorcontrib><creatorcontrib>Gross, T.</creatorcontrib><creatorcontrib>Oesterle, W.</creatorcontrib><creatorcontrib>Wendler, E.</creatorcontrib><creatorcontrib>Rheinländer, B.</creatorcontrib><creatorcontrib>Azuma, Y.</creatorcontrib><creatorcontrib>Kojima, I.</creatorcontrib><creatorcontrib>Suzuki, N.</creatorcontrib><creatorcontrib>Suzuki, M.</creatorcontrib><creatorcontrib>Tanuma, S.</creatorcontrib><creatorcontrib>Moon, D. W.</creatorcontrib><creatorcontrib>Lee, H. J.</creatorcontrib><creatorcontrib>Cho, Hyun Mo</creatorcontrib><creatorcontrib>Chen, H. Y.</creatorcontrib><creatorcontrib>Wee, A. T. S.</creatorcontrib><creatorcontrib>Osipowicz, T.</creatorcontrib><creatorcontrib>Pan, J. S.</creatorcontrib><creatorcontrib>Jordaan, W. A.</creatorcontrib><creatorcontrib>Hauert, R.</creatorcontrib><creatorcontrib>Klotz, U.</creatorcontrib><creatorcontrib>van der Marel, C.</creatorcontrib><creatorcontrib>Verheijen, M.</creatorcontrib><creatorcontrib>Tamminga, Y.</creatorcontrib><creatorcontrib>Jeynes, C.</creatorcontrib><creatorcontrib>Bailey, P.</creatorcontrib><creatorcontrib>Biswas, S.</creatorcontrib><creatorcontrib>Falke, U.</creatorcontrib><creatorcontrib>Nguyen, N. V.</creatorcontrib><creatorcontrib>Chandler‐Horowitz, D.</creatorcontrib><creatorcontrib>Ehrstein, J. R.</creatorcontrib><creatorcontrib>Muller, D.</creatorcontrib><creatorcontrib>Dura, J. A.</creatorcontrib><collection>CrossRef</collection><jtitle>Surface and interface analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Seah, M. P.</au><au>Spencer, S. J.</au><au>Bensebaa, F.</au><au>Vickridge, I.</au><au>Danzebrink, H.</au><au>Krumrey, M.</au><au>Gross, T.</au><au>Oesterle, W.</au><au>Wendler, E.</au><au>Rheinländer, B.</au><au>Azuma, Y.</au><au>Kojima, I.</au><au>Suzuki, N.</au><au>Suzuki, M.</au><au>Tanuma, S.</au><au>Moon, D. W.</au><au>Lee, H. J.</au><au>Cho, Hyun Mo</au><au>Chen, H. Y.</au><au>Wee, A. T. S.</au><au>Osipowicz, T.</au><au>Pan, J. S.</au><au>Jordaan, W. A.</au><au>Hauert, R.</au><au>Klotz, U.</au><au>van der Marel, C.</au><au>Verheijen, M.</au><au>Tamminga, Y.</au><au>Jeynes, C.</au><au>Bailey, P.</au><au>Biswas, S.</au><au>Falke, U.</au><au>Nguyen, N. V.</au><au>Chandler‐Horowitz, D.</au><au>Ehrstein, J. R.</au><au>Muller, D.</au><au>Dura, J. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Critical review of the current status of thickness measurements for ultrathin SiO 2 on Si Part V: Results of a CCQM pilot study</atitle><jtitle>Surface and interface analysis</jtitle><date>2004-09</date><risdate>2004</risdate><volume>36</volume><issue>9</issue><spage>1269</spage><epage>1303</epage><pages>1269-1303</pages><issn>0142-2421</issn><eissn>1096-9918</eissn><abstract>Results are reported from a pilot study under the Consultative Committee for Amount of Substance (CCQM) to compare measurements of and resolve any relevant measurement issues in the amount of thermal oxide on (100) and (111) orientation silicon wafer substrates in the thickness range 1.5–8 nm. As a result of the invitation to participate in this activity, 45 sets of measurements have been made in different laboratories using 10 analytical methods: medium—energy ion scattering spectrometry (MEIS), nuclear reaction analysis (NRA), RBS, elastic backscattering spectrometry (EBS), XPS, SIMS, ellipsometry, grazing—incidence x‐ray reflectometry (GIXRR), neutron reflectometry and transmission electron microscopy (TEM). The measurements are made on separate sets of 10 carefully prepared samples, all of which have been characterized by a combination of ellipsometry and XPS using carefully established reference conditions and reference parameters.
The results have been assessed against the National Physical Laboratory (NPL) data and all show excellent linearity. The data sets correlate with the NPL data with average root‐mean‐square scatters of 0.15 nm, half being better than 0.1 nm and a few at or better than 0.05 nm. Each set of data allows a relative scaling constant and a zero thickness offset to be determined. Each method has an inherent zero thickness offset between 0 nm and 1 nm and it is these offsets, measured here for the first time, that have caused many problems in the past. There are three basic classes of offset: water and carbonaceous contamination equivalent to ∼ 1 nm as seen by ellipsometry; adsorbed oxygen mainly from water at an equivalent thickness of 0.5 nm as seen by MEIS, NRA, RBS and possibly GIXRR; and no offset as seen by XPS using the Si 2p peaks. Each technique has a different uncertainty for the scaling constant and consistent results have been achieved. X‐ray photoelectron spectroscopy has large uncertainties for the scaling constant but a high precision and critically, if used correctly, has zero offset. Thus, a combination of XPS and the other methods allows the XPS scaling constant to be determined with low uncertainty, traceable via the other methods. The XPS laboratories returning results early were invited to test a new reference procedure. All showed very significant improvements. The reference attenuation lengths thus need scaling by 0.986 ± 0.009 (at an expansion factor of 2), deduced from the data for the other methods. Several other methods have small offsets and, to the extent that these can be shown to be constant or measurable, these methods will also show low uncertainty. Recommendations are provided for parameters for XPS, MEIS, RBS and NRA to improve their accuracy. Copyright © 2004 John Wiley & Sons, Ltd.</abstract><doi>10.1002/sia.1909</doi><tpages>35</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0142-2421 |
ispartof | Surface and interface analysis, 2004-09, Vol.36 (9), p.1269-1303 |
issn | 0142-2421 1096-9918 |
language | eng |
recordid | cdi_crossref_primary_10_1002_sia_1909 |
source | Wiley Online Library Journals Frontfile Complete |
title | Critical review of the current status of thickness measurements for ultrathin SiO 2 on Si Part V: Results of a CCQM pilot study |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T03%3A26%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Critical%20review%20of%20the%20current%20status%20of%20thickness%20measurements%20for%20ultrathin%20SiO%202%20on%20Si%20Part%20V:%20Results%20of%20a%20CCQM%20pilot%20study&rft.jtitle=Surface%20and%20interface%20analysis&rft.au=Seah,%20M.%20P.&rft.date=2004-09&rft.volume=36&rft.issue=9&rft.spage=1269&rft.epage=1303&rft.pages=1269-1303&rft.issn=0142-2421&rft.eissn=1096-9918&rft_id=info:doi/10.1002/sia.1909&rft_dat=%3Ccrossref%3E10_1002_sia_1909%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |