Almost all regular graphs are hamiltonian

In a previous article the authors showed that almost all labelled cubic graphs are hamiltonian. In the present article, this result is used to show that almost all r‐regular graphs are hamiltonian for any fixed r ⩾ 3, by an analysis of the distribution of 1‐factors in random regular graphs. Moreover...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Random structures & algorithms 1994-04, Vol.5 (2), p.363-374
Hauptverfasser: Robinson, R. W., Wormald, N. C.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 374
container_issue 2
container_start_page 363
container_title Random structures & algorithms
container_volume 5
creator Robinson, R. W.
Wormald, N. C.
description In a previous article the authors showed that almost all labelled cubic graphs are hamiltonian. In the present article, this result is used to show that almost all r‐regular graphs are hamiltonian for any fixed r ⩾ 3, by an analysis of the distribution of 1‐factors in random regular graphs. Moreover, almost all such graphs are r‐edge‐colorable if they have an even number of vertices. Similarly, almost all r‐regular bipartite graphs are hamiltonian and r‐edge‐colorable for fixed r ⩾ 3. © 1994 John Wiley & Sons, Inc.
doi_str_mv 10.1002/rsa.3240050209
format Article
fullrecord <record><control><sourceid>wiley_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_rsa_3240050209</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>RSA3240050209</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3939-fc8011aaea60634a4bbd7cf201ae8719ef4033ac35f8d5decfffb56b6a806e63</originalsourceid><addsrcrecordid>eNqFz01PAjEQgOHGaCKiV8979bA47XS77ZGggtEoERK9NbNLC6vlIy1G-fdCMBpPnmYO80zyMnbOocMBxGVM1EEhAQoQYA5Yi4PRuZBcH-52KXKjURyzk5ReAaBEgS120Q3zZVpnFEIW3fQ9UMymkVazlFF02YzmTVgvFw0tTtmRp5Dc2fdss_HN9bg3yO8f-7e97n1eo0GT-1oD50SOFCiUJKtqUtZeACenS26cl4BINRZeT4qJq733VaEqRRqUU9hmnf3bOi5Tis7bVWzmFDeWg9112m2n_e3cArMHH01wm3-u7dOo-8fme9uktfv8sRTfrCqxLOzzQ98Ohnfyaihf7Ai_AJOdZhk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Almost all regular graphs are hamiltonian</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Robinson, R. W. ; Wormald, N. C.</creator><creatorcontrib>Robinson, R. W. ; Wormald, N. C.</creatorcontrib><description>In a previous article the authors showed that almost all labelled cubic graphs are hamiltonian. In the present article, this result is used to show that almost all r‐regular graphs are hamiltonian for any fixed r ⩾ 3, by an analysis of the distribution of 1‐factors in random regular graphs. Moreover, almost all such graphs are r‐edge‐colorable if they have an even number of vertices. Similarly, almost all r‐regular bipartite graphs are hamiltonian and r‐edge‐colorable for fixed r ⩾ 3. © 1994 John Wiley &amp; Sons, Inc.</description><identifier>ISSN: 1042-9832</identifier><identifier>EISSN: 1098-2418</identifier><identifier>DOI: 10.1002/rsa.3240050209</identifier><language>eng</language><publisher>New York: Wiley Subscription Services, Inc., A Wiley Company</publisher><ispartof>Random structures &amp; algorithms, 1994-04, Vol.5 (2), p.363-374</ispartof><rights>Copyright © 1994 Wiley Periodicals, Inc., A Wiley Company</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3939-fc8011aaea60634a4bbd7cf201ae8719ef4033ac35f8d5decfffb56b6a806e63</citedby><cites>FETCH-LOGICAL-c3939-fc8011aaea60634a4bbd7cf201ae8719ef4033ac35f8d5decfffb56b6a806e63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Frsa.3240050209$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Frsa.3240050209$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Robinson, R. W.</creatorcontrib><creatorcontrib>Wormald, N. C.</creatorcontrib><title>Almost all regular graphs are hamiltonian</title><title>Random structures &amp; algorithms</title><addtitle>Random Struct. Alg</addtitle><description>In a previous article the authors showed that almost all labelled cubic graphs are hamiltonian. In the present article, this result is used to show that almost all r‐regular graphs are hamiltonian for any fixed r ⩾ 3, by an analysis of the distribution of 1‐factors in random regular graphs. Moreover, almost all such graphs are r‐edge‐colorable if they have an even number of vertices. Similarly, almost all r‐regular bipartite graphs are hamiltonian and r‐edge‐colorable for fixed r ⩾ 3. © 1994 John Wiley &amp; Sons, Inc.</description><issn>1042-9832</issn><issn>1098-2418</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1994</creationdate><recordtype>article</recordtype><recordid>eNqFz01PAjEQgOHGaCKiV8979bA47XS77ZGggtEoERK9NbNLC6vlIy1G-fdCMBpPnmYO80zyMnbOocMBxGVM1EEhAQoQYA5Yi4PRuZBcH-52KXKjURyzk5ReAaBEgS120Q3zZVpnFEIW3fQ9UMymkVazlFF02YzmTVgvFw0tTtmRp5Dc2fdss_HN9bg3yO8f-7e97n1eo0GT-1oD50SOFCiUJKtqUtZeACenS26cl4BINRZeT4qJq733VaEqRRqUU9hmnf3bOi5Tis7bVWzmFDeWg9112m2n_e3cArMHH01wm3-u7dOo-8fme9uktfv8sRTfrCqxLOzzQ98Ohnfyaihf7Ai_AJOdZhk</recordid><startdate>199404</startdate><enddate>199404</enddate><creator>Robinson, R. W.</creator><creator>Wormald, N. C.</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>199404</creationdate><title>Almost all regular graphs are hamiltonian</title><author>Robinson, R. W. ; Wormald, N. C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3939-fc8011aaea60634a4bbd7cf201ae8719ef4033ac35f8d5decfffb56b6a806e63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1994</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Robinson, R. W.</creatorcontrib><creatorcontrib>Wormald, N. C.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><jtitle>Random structures &amp; algorithms</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Robinson, R. W.</au><au>Wormald, N. C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Almost all regular graphs are hamiltonian</atitle><jtitle>Random structures &amp; algorithms</jtitle><addtitle>Random Struct. Alg</addtitle><date>1994-04</date><risdate>1994</risdate><volume>5</volume><issue>2</issue><spage>363</spage><epage>374</epage><pages>363-374</pages><issn>1042-9832</issn><eissn>1098-2418</eissn><abstract>In a previous article the authors showed that almost all labelled cubic graphs are hamiltonian. In the present article, this result is used to show that almost all r‐regular graphs are hamiltonian for any fixed r ⩾ 3, by an analysis of the distribution of 1‐factors in random regular graphs. Moreover, almost all such graphs are r‐edge‐colorable if they have an even number of vertices. Similarly, almost all r‐regular bipartite graphs are hamiltonian and r‐edge‐colorable for fixed r ⩾ 3. © 1994 John Wiley &amp; Sons, Inc.</abstract><cop>New York</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><doi>10.1002/rsa.3240050209</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1042-9832
ispartof Random structures & algorithms, 1994-04, Vol.5 (2), p.363-374
issn 1042-9832
1098-2418
language eng
recordid cdi_crossref_primary_10_1002_rsa_3240050209
source Wiley Online Library Journals Frontfile Complete
title Almost all regular graphs are hamiltonian
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T16%3A01%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Almost%20all%20regular%20graphs%20are%20hamiltonian&rft.jtitle=Random%20structures%20&%20algorithms&rft.au=Robinson,%20R.%20W.&rft.date=1994-04&rft.volume=5&rft.issue=2&rft.spage=363&rft.epage=374&rft.pages=363-374&rft.issn=1042-9832&rft.eissn=1098-2418&rft_id=info:doi/10.1002/rsa.3240050209&rft_dat=%3Cwiley_cross%3ERSA3240050209%3C/wiley_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true