Almost all regular graphs are hamiltonian
In a previous article the authors showed that almost all labelled cubic graphs are hamiltonian. In the present article, this result is used to show that almost all r‐regular graphs are hamiltonian for any fixed r ⩾ 3, by an analysis of the distribution of 1‐factors in random regular graphs. Moreover...
Gespeichert in:
Veröffentlicht in: | Random structures & algorithms 1994-04, Vol.5 (2), p.363-374 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 374 |
---|---|
container_issue | 2 |
container_start_page | 363 |
container_title | Random structures & algorithms |
container_volume | 5 |
creator | Robinson, R. W. Wormald, N. C. |
description | In a previous article the authors showed that almost all labelled cubic graphs are hamiltonian. In the present article, this result is used to show that almost all r‐regular graphs are hamiltonian for any fixed r ⩾ 3, by an analysis of the distribution of 1‐factors in random regular graphs. Moreover, almost all such graphs are r‐edge‐colorable if they have an even number of vertices. Similarly, almost all r‐regular bipartite graphs are hamiltonian and r‐edge‐colorable for fixed r ⩾ 3. © 1994 John Wiley & Sons, Inc. |
doi_str_mv | 10.1002/rsa.3240050209 |
format | Article |
fullrecord | <record><control><sourceid>wiley_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_rsa_3240050209</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>RSA3240050209</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3939-fc8011aaea60634a4bbd7cf201ae8719ef4033ac35f8d5decfffb56b6a806e63</originalsourceid><addsrcrecordid>eNqFz01PAjEQgOHGaCKiV8979bA47XS77ZGggtEoERK9NbNLC6vlIy1G-fdCMBpPnmYO80zyMnbOocMBxGVM1EEhAQoQYA5Yi4PRuZBcH-52KXKjURyzk5ReAaBEgS120Q3zZVpnFEIW3fQ9UMymkVazlFF02YzmTVgvFw0tTtmRp5Dc2fdss_HN9bg3yO8f-7e97n1eo0GT-1oD50SOFCiUJKtqUtZeACenS26cl4BINRZeT4qJq733VaEqRRqUU9hmnf3bOi5Tis7bVWzmFDeWg9112m2n_e3cArMHH01wm3-u7dOo-8fme9uktfv8sRTfrCqxLOzzQ98Ohnfyaihf7Ai_AJOdZhk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Almost all regular graphs are hamiltonian</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Robinson, R. W. ; Wormald, N. C.</creator><creatorcontrib>Robinson, R. W. ; Wormald, N. C.</creatorcontrib><description>In a previous article the authors showed that almost all labelled cubic graphs are hamiltonian. In the present article, this result is used to show that almost all r‐regular graphs are hamiltonian for any fixed r ⩾ 3, by an analysis of the distribution of 1‐factors in random regular graphs. Moreover, almost all such graphs are r‐edge‐colorable if they have an even number of vertices. Similarly, almost all r‐regular bipartite graphs are hamiltonian and r‐edge‐colorable for fixed r ⩾ 3. © 1994 John Wiley & Sons, Inc.</description><identifier>ISSN: 1042-9832</identifier><identifier>EISSN: 1098-2418</identifier><identifier>DOI: 10.1002/rsa.3240050209</identifier><language>eng</language><publisher>New York: Wiley Subscription Services, Inc., A Wiley Company</publisher><ispartof>Random structures & algorithms, 1994-04, Vol.5 (2), p.363-374</ispartof><rights>Copyright © 1994 Wiley Periodicals, Inc., A Wiley Company</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3939-fc8011aaea60634a4bbd7cf201ae8719ef4033ac35f8d5decfffb56b6a806e63</citedby><cites>FETCH-LOGICAL-c3939-fc8011aaea60634a4bbd7cf201ae8719ef4033ac35f8d5decfffb56b6a806e63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Frsa.3240050209$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Frsa.3240050209$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Robinson, R. W.</creatorcontrib><creatorcontrib>Wormald, N. C.</creatorcontrib><title>Almost all regular graphs are hamiltonian</title><title>Random structures & algorithms</title><addtitle>Random Struct. Alg</addtitle><description>In a previous article the authors showed that almost all labelled cubic graphs are hamiltonian. In the present article, this result is used to show that almost all r‐regular graphs are hamiltonian for any fixed r ⩾ 3, by an analysis of the distribution of 1‐factors in random regular graphs. Moreover, almost all such graphs are r‐edge‐colorable if they have an even number of vertices. Similarly, almost all r‐regular bipartite graphs are hamiltonian and r‐edge‐colorable for fixed r ⩾ 3. © 1994 John Wiley & Sons, Inc.</description><issn>1042-9832</issn><issn>1098-2418</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1994</creationdate><recordtype>article</recordtype><recordid>eNqFz01PAjEQgOHGaCKiV8979bA47XS77ZGggtEoERK9NbNLC6vlIy1G-fdCMBpPnmYO80zyMnbOocMBxGVM1EEhAQoQYA5Yi4PRuZBcH-52KXKjURyzk5ReAaBEgS120Q3zZVpnFEIW3fQ9UMymkVazlFF02YzmTVgvFw0tTtmRp5Dc2fdss_HN9bg3yO8f-7e97n1eo0GT-1oD50SOFCiUJKtqUtZeACenS26cl4BINRZeT4qJq733VaEqRRqUU9hmnf3bOi5Tis7bVWzmFDeWg9112m2n_e3cArMHH01wm3-u7dOo-8fme9uktfv8sRTfrCqxLOzzQ98Ohnfyaihf7Ai_AJOdZhk</recordid><startdate>199404</startdate><enddate>199404</enddate><creator>Robinson, R. W.</creator><creator>Wormald, N. C.</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>199404</creationdate><title>Almost all regular graphs are hamiltonian</title><author>Robinson, R. W. ; Wormald, N. C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3939-fc8011aaea60634a4bbd7cf201ae8719ef4033ac35f8d5decfffb56b6a806e63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1994</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Robinson, R. W.</creatorcontrib><creatorcontrib>Wormald, N. C.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><jtitle>Random structures & algorithms</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Robinson, R. W.</au><au>Wormald, N. C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Almost all regular graphs are hamiltonian</atitle><jtitle>Random structures & algorithms</jtitle><addtitle>Random Struct. Alg</addtitle><date>1994-04</date><risdate>1994</risdate><volume>5</volume><issue>2</issue><spage>363</spage><epage>374</epage><pages>363-374</pages><issn>1042-9832</issn><eissn>1098-2418</eissn><abstract>In a previous article the authors showed that almost all labelled cubic graphs are hamiltonian. In the present article, this result is used to show that almost all r‐regular graphs are hamiltonian for any fixed r ⩾ 3, by an analysis of the distribution of 1‐factors in random regular graphs. Moreover, almost all such graphs are r‐edge‐colorable if they have an even number of vertices. Similarly, almost all r‐regular bipartite graphs are hamiltonian and r‐edge‐colorable for fixed r ⩾ 3. © 1994 John Wiley & Sons, Inc.</abstract><cop>New York</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><doi>10.1002/rsa.3240050209</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1042-9832 |
ispartof | Random structures & algorithms, 1994-04, Vol.5 (2), p.363-374 |
issn | 1042-9832 1098-2418 |
language | eng |
recordid | cdi_crossref_primary_10_1002_rsa_3240050209 |
source | Wiley Online Library Journals Frontfile Complete |
title | Almost all regular graphs are hamiltonian |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T16%3A01%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Almost%20all%20regular%20graphs%20are%20hamiltonian&rft.jtitle=Random%20structures%20&%20algorithms&rft.au=Robinson,%20R.%20W.&rft.date=1994-04&rft.volume=5&rft.issue=2&rft.spage=363&rft.epage=374&rft.pages=363-374&rft.issn=1042-9832&rft.eissn=1098-2418&rft_id=info:doi/10.1002/rsa.3240050209&rft_dat=%3Cwiley_cross%3ERSA3240050209%3C/wiley_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |