On the expected value of the minimum assignment
The minimum k‐assignment of an m × n matrix X is the minimum sum of k entries of X, no two of which belong to the same row or column. Coppersmith and Sorkin conjectured that if X is generated by choosing each entry independently from the exponential distribution with mean 1, then the expected value...
Gespeichert in:
Veröffentlicht in: | Random structures & algorithms 2002-08, Vol.21 (1), p.33-58 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 58 |
---|---|
container_issue | 1 |
container_start_page | 33 |
container_title | Random structures & algorithms |
container_volume | 21 |
creator | Buck, Marshall W. Chan, Clara S. Robbins, David P. |
description | The minimum k‐assignment of an m × n matrix X is the minimum sum of k entries of X, no two of which belong to the same row or column. Coppersmith and Sorkin conjectured that if X is generated by choosing each entry independently from the exponential distribution with mean 1, then the expected value of its minimum k‐assignment is given by an explicit formula, which has been proven only in a few cases. In this paper we describe our efforts to prove the Coppersmith–Sorkin conjecture by considering the more general situation where the entries xij of X are chosen independently from different distributions. In particular, we require that xij be chosen from the exponential distribution with mean 1/ricj. We conjecture an explicit formula for the expected value of the minimum k‐assignment of such X and give evidence for this formula. © 2002 Wiley Periodicals, Inc. Random Struct. Alg., 21: 33–58, 2002 |
doi_str_mv | 10.1002/rsa.10045 |
format | Article |
fullrecord | <record><control><sourceid>wiley_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_rsa_10045</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>RSA10045</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3405-498542aef617cc3ce4c8a74e62a6e1783097177a3ba29dbb1474b7cb9e5a0693</originalsourceid><addsrcrecordid>eNp1j0tPwkAUhSdGExFd-A-6dVE7r85jCUTRhEhiSXQ3mQ63OtoW0ikI_15K1Z2re3LznZN8CF0TfEswpkkTbBd4eoIGBGsVU07UaZc5jbVi9BxdhPCBMZaMsgFK5nXUvkMEuzW4FpbR1pYbiFbF8Vv52lebKrIh-Le6grq9RGeFLQNc_dwhWtzfLSYP8Ww-fZyMZrFjHKcx1yrl1EIhiHSOOeBOWclBUCuASMWwlkRKy3JL9TLPCZc8ly7XkFosNBuim37WNasQGijMuvGVbfaGYNOJmoOoOYoe2KRnv3wJ-_9B85yNfhtx3_Chhd1fwzafRkgmU_PyNDUiG79m47E0mH0Da0disA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>On the expected value of the minimum assignment</title><source>Wiley Online Library All Journals</source><creator>Buck, Marshall W. ; Chan, Clara S. ; Robbins, David P.</creator><creatorcontrib>Buck, Marshall W. ; Chan, Clara S. ; Robbins, David P.</creatorcontrib><description>The minimum k‐assignment of an m × n matrix X is the minimum sum of k entries of X, no two of which belong to the same row or column. Coppersmith and Sorkin conjectured that if X is generated by choosing each entry independently from the exponential distribution with mean 1, then the expected value of its minimum k‐assignment is given by an explicit formula, which has been proven only in a few cases. In this paper we describe our efforts to prove the Coppersmith–Sorkin conjecture by considering the more general situation where the entries xij of X are chosen independently from different distributions. In particular, we require that xij be chosen from the exponential distribution with mean 1/ricj. We conjecture an explicit formula for the expected value of the minimum k‐assignment of such X and give evidence for this formula. © 2002 Wiley Periodicals, Inc. Random Struct. Alg., 21: 33–58, 2002</description><identifier>ISSN: 1042-9832</identifier><identifier>EISSN: 1098-2418</identifier><identifier>DOI: 10.1002/rsa.10045</identifier><language>eng</language><publisher>New York: Wiley Subscription Services, Inc., A Wiley Company</publisher><ispartof>Random structures & algorithms, 2002-08, Vol.21 (1), p.33-58</ispartof><rights>Copyright © 2002 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3405-498542aef617cc3ce4c8a74e62a6e1783097177a3ba29dbb1474b7cb9e5a0693</citedby><cites>FETCH-LOGICAL-c3405-498542aef617cc3ce4c8a74e62a6e1783097177a3ba29dbb1474b7cb9e5a0693</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Frsa.10045$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Frsa.10045$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27922,27923,45572,45573</link.rule.ids></links><search><creatorcontrib>Buck, Marshall W.</creatorcontrib><creatorcontrib>Chan, Clara S.</creatorcontrib><creatorcontrib>Robbins, David P.</creatorcontrib><title>On the expected value of the minimum assignment</title><title>Random structures & algorithms</title><addtitle>Random Struct. Alg</addtitle><description>The minimum k‐assignment of an m × n matrix X is the minimum sum of k entries of X, no two of which belong to the same row or column. Coppersmith and Sorkin conjectured that if X is generated by choosing each entry independently from the exponential distribution with mean 1, then the expected value of its minimum k‐assignment is given by an explicit formula, which has been proven only in a few cases. In this paper we describe our efforts to prove the Coppersmith–Sorkin conjecture by considering the more general situation where the entries xij of X are chosen independently from different distributions. In particular, we require that xij be chosen from the exponential distribution with mean 1/ricj. We conjecture an explicit formula for the expected value of the minimum k‐assignment of such X and give evidence for this formula. © 2002 Wiley Periodicals, Inc. Random Struct. Alg., 21: 33–58, 2002</description><issn>1042-9832</issn><issn>1098-2418</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><recordid>eNp1j0tPwkAUhSdGExFd-A-6dVE7r85jCUTRhEhiSXQ3mQ63OtoW0ikI_15K1Z2re3LznZN8CF0TfEswpkkTbBd4eoIGBGsVU07UaZc5jbVi9BxdhPCBMZaMsgFK5nXUvkMEuzW4FpbR1pYbiFbF8Vv52lebKrIh-Le6grq9RGeFLQNc_dwhWtzfLSYP8Ww-fZyMZrFjHKcx1yrl1EIhiHSOOeBOWclBUCuASMWwlkRKy3JL9TLPCZc8ly7XkFosNBuim37WNasQGijMuvGVbfaGYNOJmoOoOYoe2KRnv3wJ-_9B85yNfhtx3_Chhd1fwzafRkgmU_PyNDUiG79m47E0mH0Da0disA</recordid><startdate>200208</startdate><enddate>200208</enddate><creator>Buck, Marshall W.</creator><creator>Chan, Clara S.</creator><creator>Robbins, David P.</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>200208</creationdate><title>On the expected value of the minimum assignment</title><author>Buck, Marshall W. ; Chan, Clara S. ; Robbins, David P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3405-498542aef617cc3ce4c8a74e62a6e1783097177a3ba29dbb1474b7cb9e5a0693</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Buck, Marshall W.</creatorcontrib><creatorcontrib>Chan, Clara S.</creatorcontrib><creatorcontrib>Robbins, David P.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><jtitle>Random structures & algorithms</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Buck, Marshall W.</au><au>Chan, Clara S.</au><au>Robbins, David P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the expected value of the minimum assignment</atitle><jtitle>Random structures & algorithms</jtitle><addtitle>Random Struct. Alg</addtitle><date>2002-08</date><risdate>2002</risdate><volume>21</volume><issue>1</issue><spage>33</spage><epage>58</epage><pages>33-58</pages><issn>1042-9832</issn><eissn>1098-2418</eissn><abstract>The minimum k‐assignment of an m × n matrix X is the minimum sum of k entries of X, no two of which belong to the same row or column. Coppersmith and Sorkin conjectured that if X is generated by choosing each entry independently from the exponential distribution with mean 1, then the expected value of its minimum k‐assignment is given by an explicit formula, which has been proven only in a few cases. In this paper we describe our efforts to prove the Coppersmith–Sorkin conjecture by considering the more general situation where the entries xij of X are chosen independently from different distributions. In particular, we require that xij be chosen from the exponential distribution with mean 1/ricj. We conjecture an explicit formula for the expected value of the minimum k‐assignment of such X and give evidence for this formula. © 2002 Wiley Periodicals, Inc. Random Struct. Alg., 21: 33–58, 2002</abstract><cop>New York</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><doi>10.1002/rsa.10045</doi><tpages>26</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1042-9832 |
ispartof | Random structures & algorithms, 2002-08, Vol.21 (1), p.33-58 |
issn | 1042-9832 1098-2418 |
language | eng |
recordid | cdi_crossref_primary_10_1002_rsa_10045 |
source | Wiley Online Library All Journals |
title | On the expected value of the minimum assignment |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T18%3A54%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20expected%20value%20of%20the%20minimum%20assignment&rft.jtitle=Random%20structures%20&%20algorithms&rft.au=Buck,%20Marshall%20W.&rft.date=2002-08&rft.volume=21&rft.issue=1&rft.spage=33&rft.epage=58&rft.pages=33-58&rft.issn=1042-9832&rft.eissn=1098-2418&rft_id=info:doi/10.1002/rsa.10045&rft_dat=%3Cwiley_cross%3ERSA10045%3C/wiley_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |