On the expected value of the minimum assignment

The minimum k‐assignment of an m × n matrix X is the minimum sum of k entries of X, no two of which belong to the same row or column. Coppersmith and Sorkin conjectured that if X is generated by choosing each entry independently from the exponential distribution with mean 1, then the expected value...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Random structures & algorithms 2002-08, Vol.21 (1), p.33-58
Hauptverfasser: Buck, Marshall W., Chan, Clara S., Robbins, David P.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 58
container_issue 1
container_start_page 33
container_title Random structures & algorithms
container_volume 21
creator Buck, Marshall W.
Chan, Clara S.
Robbins, David P.
description The minimum k‐assignment of an m × n matrix X is the minimum sum of k entries of X, no two of which belong to the same row or column. Coppersmith and Sorkin conjectured that if X is generated by choosing each entry independently from the exponential distribution with mean 1, then the expected value of its minimum k‐assignment is given by an explicit formula, which has been proven only in a few cases. In this paper we describe our efforts to prove the Coppersmith–Sorkin conjecture by considering the more general situation where the entries xij of X are chosen independently from different distributions. In particular, we require that xij be chosen from the exponential distribution with mean 1/ricj. We conjecture an explicit formula for the expected value of the minimum k‐assignment of such X and give evidence for this formula. © 2002 Wiley Periodicals, Inc. Random Struct. Alg., 21: 33–58, 2002
doi_str_mv 10.1002/rsa.10045
format Article
fullrecord <record><control><sourceid>wiley_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_rsa_10045</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>RSA10045</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3405-498542aef617cc3ce4c8a74e62a6e1783097177a3ba29dbb1474b7cb9e5a0693</originalsourceid><addsrcrecordid>eNp1j0tPwkAUhSdGExFd-A-6dVE7r85jCUTRhEhiSXQ3mQ63OtoW0ikI_15K1Z2re3LznZN8CF0TfEswpkkTbBd4eoIGBGsVU07UaZc5jbVi9BxdhPCBMZaMsgFK5nXUvkMEuzW4FpbR1pYbiFbF8Vv52lebKrIh-Le6grq9RGeFLQNc_dwhWtzfLSYP8Ww-fZyMZrFjHKcx1yrl1EIhiHSOOeBOWclBUCuASMWwlkRKy3JL9TLPCZc8ly7XkFosNBuim37WNasQGijMuvGVbfaGYNOJmoOoOYoe2KRnv3wJ-_9B85yNfhtx3_Chhd1fwzafRkgmU_PyNDUiG79m47E0mH0Da0disA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>On the expected value of the minimum assignment</title><source>Wiley Online Library All Journals</source><creator>Buck, Marshall W. ; Chan, Clara S. ; Robbins, David P.</creator><creatorcontrib>Buck, Marshall W. ; Chan, Clara S. ; Robbins, David P.</creatorcontrib><description>The minimum k‐assignment of an m × n matrix X is the minimum sum of k entries of X, no two of which belong to the same row or column. Coppersmith and Sorkin conjectured that if X is generated by choosing each entry independently from the exponential distribution with mean 1, then the expected value of its minimum k‐assignment is given by an explicit formula, which has been proven only in a few cases. In this paper we describe our efforts to prove the Coppersmith–Sorkin conjecture by considering the more general situation where the entries xij of X are chosen independently from different distributions. In particular, we require that xij be chosen from the exponential distribution with mean 1/ricj. We conjecture an explicit formula for the expected value of the minimum k‐assignment of such X and give evidence for this formula. © 2002 Wiley Periodicals, Inc. Random Struct. Alg., 21: 33–58, 2002</description><identifier>ISSN: 1042-9832</identifier><identifier>EISSN: 1098-2418</identifier><identifier>DOI: 10.1002/rsa.10045</identifier><language>eng</language><publisher>New York: Wiley Subscription Services, Inc., A Wiley Company</publisher><ispartof>Random structures &amp; algorithms, 2002-08, Vol.21 (1), p.33-58</ispartof><rights>Copyright © 2002 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3405-498542aef617cc3ce4c8a74e62a6e1783097177a3ba29dbb1474b7cb9e5a0693</citedby><cites>FETCH-LOGICAL-c3405-498542aef617cc3ce4c8a74e62a6e1783097177a3ba29dbb1474b7cb9e5a0693</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Frsa.10045$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Frsa.10045$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27922,27923,45572,45573</link.rule.ids></links><search><creatorcontrib>Buck, Marshall W.</creatorcontrib><creatorcontrib>Chan, Clara S.</creatorcontrib><creatorcontrib>Robbins, David P.</creatorcontrib><title>On the expected value of the minimum assignment</title><title>Random structures &amp; algorithms</title><addtitle>Random Struct. Alg</addtitle><description>The minimum k‐assignment of an m × n matrix X is the minimum sum of k entries of X, no two of which belong to the same row or column. Coppersmith and Sorkin conjectured that if X is generated by choosing each entry independently from the exponential distribution with mean 1, then the expected value of its minimum k‐assignment is given by an explicit formula, which has been proven only in a few cases. In this paper we describe our efforts to prove the Coppersmith–Sorkin conjecture by considering the more general situation where the entries xij of X are chosen independently from different distributions. In particular, we require that xij be chosen from the exponential distribution with mean 1/ricj. We conjecture an explicit formula for the expected value of the minimum k‐assignment of such X and give evidence for this formula. © 2002 Wiley Periodicals, Inc. Random Struct. Alg., 21: 33–58, 2002</description><issn>1042-9832</issn><issn>1098-2418</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><recordid>eNp1j0tPwkAUhSdGExFd-A-6dVE7r85jCUTRhEhiSXQ3mQ63OtoW0ikI_15K1Z2re3LznZN8CF0TfEswpkkTbBd4eoIGBGsVU07UaZc5jbVi9BxdhPCBMZaMsgFK5nXUvkMEuzW4FpbR1pYbiFbF8Vv52lebKrIh-Le6grq9RGeFLQNc_dwhWtzfLSYP8Ww-fZyMZrFjHKcx1yrl1EIhiHSOOeBOWclBUCuASMWwlkRKy3JL9TLPCZc8ly7XkFosNBuim37WNasQGijMuvGVbfaGYNOJmoOoOYoe2KRnv3wJ-_9B85yNfhtx3_Chhd1fwzafRkgmU_PyNDUiG79m47E0mH0Da0disA</recordid><startdate>200208</startdate><enddate>200208</enddate><creator>Buck, Marshall W.</creator><creator>Chan, Clara S.</creator><creator>Robbins, David P.</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>200208</creationdate><title>On the expected value of the minimum assignment</title><author>Buck, Marshall W. ; Chan, Clara S. ; Robbins, David P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3405-498542aef617cc3ce4c8a74e62a6e1783097177a3ba29dbb1474b7cb9e5a0693</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Buck, Marshall W.</creatorcontrib><creatorcontrib>Chan, Clara S.</creatorcontrib><creatorcontrib>Robbins, David P.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><jtitle>Random structures &amp; algorithms</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Buck, Marshall W.</au><au>Chan, Clara S.</au><au>Robbins, David P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the expected value of the minimum assignment</atitle><jtitle>Random structures &amp; algorithms</jtitle><addtitle>Random Struct. Alg</addtitle><date>2002-08</date><risdate>2002</risdate><volume>21</volume><issue>1</issue><spage>33</spage><epage>58</epage><pages>33-58</pages><issn>1042-9832</issn><eissn>1098-2418</eissn><abstract>The minimum k‐assignment of an m × n matrix X is the minimum sum of k entries of X, no two of which belong to the same row or column. Coppersmith and Sorkin conjectured that if X is generated by choosing each entry independently from the exponential distribution with mean 1, then the expected value of its minimum k‐assignment is given by an explicit formula, which has been proven only in a few cases. In this paper we describe our efforts to prove the Coppersmith–Sorkin conjecture by considering the more general situation where the entries xij of X are chosen independently from different distributions. In particular, we require that xij be chosen from the exponential distribution with mean 1/ricj. We conjecture an explicit formula for the expected value of the minimum k‐assignment of such X and give evidence for this formula. © 2002 Wiley Periodicals, Inc. Random Struct. Alg., 21: 33–58, 2002</abstract><cop>New York</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><doi>10.1002/rsa.10045</doi><tpages>26</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1042-9832
ispartof Random structures & algorithms, 2002-08, Vol.21 (1), p.33-58
issn 1042-9832
1098-2418
language eng
recordid cdi_crossref_primary_10_1002_rsa_10045
source Wiley Online Library All Journals
title On the expected value of the minimum assignment
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T18%3A54%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20expected%20value%20of%20the%20minimum%20assignment&rft.jtitle=Random%20structures%20&%20algorithms&rft.au=Buck,%20Marshall%20W.&rft.date=2002-08&rft.volume=21&rft.issue=1&rft.spage=33&rft.epage=58&rft.pages=33-58&rft.issn=1042-9832&rft.eissn=1098-2418&rft_id=info:doi/10.1002/rsa.10045&rft_dat=%3Cwiley_cross%3ERSA10045%3C/wiley_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true