Resilient data‐driven asymmetric bipartite consensus for nonlinear multi‐agent systems against DoS attacks

In this article, we study an unified resilient asymmetric bipartite consensus (URABC) problem for nonlinear multi‐agent systems with both cooperative and antagonistic interactions under denial‐of‐service (DoS) attacks. We first prove that the URABC problem is solved by stabilizing the neighborhood a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of robust and nonlinear control 2024-04
Hauptverfasser: Zhang, Yi, Wang, Yichao, Zhao, Junbo, Zuo, Shan
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title International journal of robust and nonlinear control
container_volume
creator Zhang, Yi
Wang, Yichao
Zhao, Junbo
Zuo, Shan
description In this article, we study an unified resilient asymmetric bipartite consensus (URABC) problem for nonlinear multi‐agent systems with both cooperative and antagonistic interactions under denial‐of‐service (DoS) attacks. We first prove that the URABC problem is solved by stabilizing the neighborhood asymmetric bipartite consensus error. Then, we develop a distributed compact form dynamic linearization method to linearize the neighborhood asymmetric bipartite consensus error. By using an attack compensation mechanism to eliminate the adverse effects of DoS attacks and an extended discrete state observer to enhance the robustness against unknown dynamics, we finally propose a distributed resilient data‐driven adaptive control (DDAC) algorithm to solve the URABC problem. A numerical example validates the proposed results.
doi_str_mv 10.1002/rnc.7340
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1002_rnc_7340</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1002_rnc_7340</sourcerecordid><originalsourceid>FETCH-LOGICAL-c188t-30bfb00dcc207c5a4485f5441ea56c2fb18157f77db686ba10d2b8d0230210273</originalsourceid><addsrcrecordid>eNotkMtKxDAYhYMoOF7AR8jSTcc_l07TpYxXGBC8rMvfNBmibTrkzwiz8xF8Rp_EKbo6Bw7nW3yMXQiYCwB5laKdV0rDAZsJqOtCSFUfTl3XhamlOmYnRO8A-03qGYvPjkIfXMy8w4w_X99dCp8ucqTdMLicguVt2GDKITtux0gu0pa4HxOPY-xDdJj4sO1z2H9xPYFoR9kNxHGNIVLmN-MLx5zRftAZO_LYkzv_z1P2dnf7unwoVk_3j8vrVWGFMblQ0PoWoLNWQmVL1NqUvtRaOCwXVvpWGFFWvqq6dmEWLQroZGs6kAqkAFmpU3b5x7VpJErON5sUBky7RkAzeWr2nprJk_oFcWNfng</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Resilient data‐driven asymmetric bipartite consensus for nonlinear multi‐agent systems against DoS attacks</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Zhang, Yi ; Wang, Yichao ; Zhao, Junbo ; Zuo, Shan</creator><creatorcontrib>Zhang, Yi ; Wang, Yichao ; Zhao, Junbo ; Zuo, Shan</creatorcontrib><description>In this article, we study an unified resilient asymmetric bipartite consensus (URABC) problem for nonlinear multi‐agent systems with both cooperative and antagonistic interactions under denial‐of‐service (DoS) attacks. We first prove that the URABC problem is solved by stabilizing the neighborhood asymmetric bipartite consensus error. Then, we develop a distributed compact form dynamic linearization method to linearize the neighborhood asymmetric bipartite consensus error. By using an attack compensation mechanism to eliminate the adverse effects of DoS attacks and an extended discrete state observer to enhance the robustness against unknown dynamics, we finally propose a distributed resilient data‐driven adaptive control (DDAC) algorithm to solve the URABC problem. A numerical example validates the proposed results.</description><identifier>ISSN: 1049-8923</identifier><identifier>EISSN: 1099-1239</identifier><identifier>DOI: 10.1002/rnc.7340</identifier><language>eng</language><ispartof>International journal of robust and nonlinear control, 2024-04</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c188t-30bfb00dcc207c5a4485f5441ea56c2fb18157f77db686ba10d2b8d0230210273</cites><orcidid>0000-0002-4457-1601</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Zhang, Yi</creatorcontrib><creatorcontrib>Wang, Yichao</creatorcontrib><creatorcontrib>Zhao, Junbo</creatorcontrib><creatorcontrib>Zuo, Shan</creatorcontrib><title>Resilient data‐driven asymmetric bipartite consensus for nonlinear multi‐agent systems against DoS attacks</title><title>International journal of robust and nonlinear control</title><description>In this article, we study an unified resilient asymmetric bipartite consensus (URABC) problem for nonlinear multi‐agent systems with both cooperative and antagonistic interactions under denial‐of‐service (DoS) attacks. We first prove that the URABC problem is solved by stabilizing the neighborhood asymmetric bipartite consensus error. Then, we develop a distributed compact form dynamic linearization method to linearize the neighborhood asymmetric bipartite consensus error. By using an attack compensation mechanism to eliminate the adverse effects of DoS attacks and an extended discrete state observer to enhance the robustness against unknown dynamics, we finally propose a distributed resilient data‐driven adaptive control (DDAC) algorithm to solve the URABC problem. A numerical example validates the proposed results.</description><issn>1049-8923</issn><issn>1099-1239</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNotkMtKxDAYhYMoOF7AR8jSTcc_l07TpYxXGBC8rMvfNBmibTrkzwiz8xF8Rp_EKbo6Bw7nW3yMXQiYCwB5laKdV0rDAZsJqOtCSFUfTl3XhamlOmYnRO8A-03qGYvPjkIfXMy8w4w_X99dCp8ucqTdMLicguVt2GDKITtux0gu0pa4HxOPY-xDdJj4sO1z2H9xPYFoR9kNxHGNIVLmN-MLx5zRftAZO_LYkzv_z1P2dnf7unwoVk_3j8vrVWGFMblQ0PoWoLNWQmVL1NqUvtRaOCwXVvpWGFFWvqq6dmEWLQroZGs6kAqkAFmpU3b5x7VpJErON5sUBky7RkAzeWr2nprJk_oFcWNfng</recordid><startdate>20240407</startdate><enddate>20240407</enddate><creator>Zhang, Yi</creator><creator>Wang, Yichao</creator><creator>Zhao, Junbo</creator><creator>Zuo, Shan</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-4457-1601</orcidid></search><sort><creationdate>20240407</creationdate><title>Resilient data‐driven asymmetric bipartite consensus for nonlinear multi‐agent systems against DoS attacks</title><author>Zhang, Yi ; Wang, Yichao ; Zhao, Junbo ; Zuo, Shan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c188t-30bfb00dcc207c5a4485f5441ea56c2fb18157f77db686ba10d2b8d0230210273</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Yi</creatorcontrib><creatorcontrib>Wang, Yichao</creatorcontrib><creatorcontrib>Zhao, Junbo</creatorcontrib><creatorcontrib>Zuo, Shan</creatorcontrib><collection>CrossRef</collection><jtitle>International journal of robust and nonlinear control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Yi</au><au>Wang, Yichao</au><au>Zhao, Junbo</au><au>Zuo, Shan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Resilient data‐driven asymmetric bipartite consensus for nonlinear multi‐agent systems against DoS attacks</atitle><jtitle>International journal of robust and nonlinear control</jtitle><date>2024-04-07</date><risdate>2024</risdate><issn>1049-8923</issn><eissn>1099-1239</eissn><abstract>In this article, we study an unified resilient asymmetric bipartite consensus (URABC) problem for nonlinear multi‐agent systems with both cooperative and antagonistic interactions under denial‐of‐service (DoS) attacks. We first prove that the URABC problem is solved by stabilizing the neighborhood asymmetric bipartite consensus error. Then, we develop a distributed compact form dynamic linearization method to linearize the neighborhood asymmetric bipartite consensus error. By using an attack compensation mechanism to eliminate the adverse effects of DoS attacks and an extended discrete state observer to enhance the robustness against unknown dynamics, we finally propose a distributed resilient data‐driven adaptive control (DDAC) algorithm to solve the URABC problem. A numerical example validates the proposed results.</abstract><doi>10.1002/rnc.7340</doi><orcidid>https://orcid.org/0000-0002-4457-1601</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1049-8923
ispartof International journal of robust and nonlinear control, 2024-04
issn 1049-8923
1099-1239
language eng
recordid cdi_crossref_primary_10_1002_rnc_7340
source Wiley Online Library Journals Frontfile Complete
title Resilient data‐driven asymmetric bipartite consensus for nonlinear multi‐agent systems against DoS attacks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T04%3A58%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Resilient%20data%E2%80%90driven%20asymmetric%20bipartite%20consensus%20for%20nonlinear%20multi%E2%80%90agent%20systems%20against%20DoS%20attacks&rft.jtitle=International%20journal%20of%20robust%20and%20nonlinear%20control&rft.au=Zhang,%20Yi&rft.date=2024-04-07&rft.issn=1049-8923&rft.eissn=1099-1239&rft_id=info:doi/10.1002/rnc.7340&rft_dat=%3Ccrossref%3E10_1002_rnc_7340%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true